
 1

Computer Science Extended Essay:
Investigating the time complexities of the

AVL Tree and Red-Black Tree insertion

algorithms

Research question:

How does the re-balancing algorithm

efficiency of an Adelson-Velskii and Landis

Tree compare to that of a Red-Black Tree in

terms of time complexity upon insertion of

values?

Essay word count: 3997

 2

Table of Contents

1. INTRODUCTION... 3

2. THEORY .. 3
2.1 BINARY SEARCH TREES ... 3
2.2 ADELSON-VELSKII AND LANDIS TREE .. 7
2.3 RED-BLACK TREE ... 16

3. HYPOTHESIS AND APPLIED THEORY ... 23

4. METHODOLOGY.. 24
4.1 INDEPENDENT VARIABLES.. 24
4.2 DEPENDENT VARIABLE .. 24
4.3 CONTROLLED VARIABLES .. 25
4.4 PROCEDURE .. 25

5. DATA PROCESSING AND GRAPH .. 26
5.1 DATA COLLECTION AND PROCESSING.. 26
5.2 GRAPH OF TIME AGAINST SET SIZE .. 26

6. RESULTS DISCUSSION .. 27

7. CONCLUSION ... 29

BIBLIOGRAPHY... 31

APPENDICES .. 33
APPENDIX A: TREE/TREENODE LIBRARIES ... 33

A1: AvlTree.java (Weiss, n.d.) ... 33
A2: AvlNode.java (Weiss, n.d.) .. 38
A3: RedBlackTree.java (Weiss, n.d.) .. 39
A4: RedBlackNode.java (Weiss, n.d.) ... 44

APPENDIX B: PROGRAM USED IN THE EXPERIMENT ... 44
APPENDIX C: RAW DATA OF TIMES OBTAINED .. 45

C1: Raw and average times for AVL Tree ... 45
C2: Raw and average times for Red-Black Tree .. 45

APPENDIX D: PERMISSION LETTER FROM DR. MARK ALLEN WEISS.. 45
 D1: Permission email sent to Dr. Weiss... 46
D2: Reply email from Dr. Weiss .. 46

 3

1. Introduction

This essay will focus on the structure of binary search trees, a relatively complex data structure

which can be very useful in many applications. This essay will specifically look into the

Adelson-Velskii and Landis (AVL) Tree and the Red-Black Tree, which are two types of binary

search tree. Given a set of values inserted into both trees, the time complexity for the insertion

operations for both trees will be investigated. Time complexity is the term used to refer to the

amount of time taken for an algorithm to run given a set of input values of a certain size1.

Hence, the question: How does the re-balancing efficiency of an Adelson-Velskii and Landis

Tree compare to that of a Red-Black Tree in terms of time complexity upon insertion of values?

This area links to Topic 5 of the IB Higher Level Computer Science course.

2. Theory

2.1 Binary Search Trees

A binary search tree is a data structure with a defined behavior and is the basis of the two trees

being looked into. The word binary refers to "being composed of two things"2. For trees, it

means each item in a tree must point to a maximum of two other items (referred to as children).

This means zero children or one child are also allowed. An item of a binary search tree is

commonly referred to as a node. This term will be used for the remainder of the essay to

describe values in trees.

1 Adamchik, V. S., 2009. Algorithmic Complexity. [Online]

Available at: https://www.cs.cmu.edu/~adamchik/15-
121/lectures/Algorithmic%20Complexity/complexity.html
[Accessed June 2017].

2 Dictionary.com Unabridged, n.d. Binary. [Online]

Available at: http://www.dictionary.com/browse/binary
[Accessed May 2017].

 4

A binary search tree must choose where to place a value when it is inserted. Each node in the

tree can be compared in some way (for example, numbers by size and text lexicographically).

Each node will have a left child pointer and a right child pointer, which points to another node

in the tree. The left child of a node must have a value 'less than' the node, which means the

right child must have a value 'greater than' the node.

When inserting a node:

1. If the tree is empty, the root of the tree (the top value or more commonly known as the

root node) is set to this node.

2. If a root node exists and its value is 'greater than' the value being inserted, the same

process will occur with the root's left child.

3. If a root node exists and its value is 'less than' the value being inserted, the same process

will occur with the root's right child.

4. This will occur until there is a position in the tree where a left child or right child doesn't

exist for a node. This will be where the new node is placed.

An example of a typical Binary Data Tree is shown in Figure 2.1.1 below.

 5

Figure 2.1.1: Example of a Binary Data Tree

The 'Search' in 'Binary Search Tree' comes from the main purpose of using the structure in the

first place: searching it. Searching follows a similar process to insertion.

By organizing nodes in this structure, searching for values can happen very efficiently

compared to, say, a linear search. A notation used to measure the worst-case efficiency of an

algorithm is the Big-O notation3. For an array, it is 𝑂(𝑁), where 𝑁 is the size of the array. For

binary search trees, the searching efficiency is 𝑂(log2 𝑁) , which is a massive difference

compared to 𝑂(𝑁) as shown in Figure 2.1.2 below.

3 Massachusetts Institute of Technology, 2003. Big O Notation. [Online]

Available at: http://web.mit.edu/16.070/www/lecture/big_o.pdf
[Accessed June 2017].

 6

Figure 2.1.2: A graph to show the worst-case number of searches for the two data structures (y-

axis) over the number of values stored (x-axis)

Dashed line – Array

Solid line – Binary Search Tree

While this seems like an amazing feature of binary search trees, consider the insertion of the

values: 1, 2, 3, 4, 5 in that order. The fact is a tree like this would form:

Figure 2.1.3: An unbalanced binary data tree

 7

As seen, this structure looks similar to a regular list. In fact, for worst-case scenario, the

efficiency would be 𝑂(5), as like a linear search. This would not be considered a binary search

tree.

In order to solve the problem, trees will have balancing algorithms implemented in order to

maintain the structure they need (reducing the number of searches required for a value).

Different implementations of the same structure can be given, where both have the same

behavior but a different method in ensuring this behavior. This will mean that some

implementations are bound to be better than others in certain ways. Taking the balancing

algorithm into account, both AVL Trees and Red-Black Trees have different definitions of how

they go about balancing themselves. These will be explored in detail below.

The AVL Tree and Red-Black Tree algorithms used in the sections below were retrieved from

online. I have requested and received permission from the creator of the algorithms: Dr. Mark

Allen Weiss. The permission letter and reply can be found in Appendix D (page 44).

2.2 Adelson-Velskii and Landis Tree

An Adelson-Velskii and Landis (AVL) Tree makes use of a height-balance property, which

states that, for each node, the height difference of the children of that node differ by 1 at most4.

This means if any height difference is more than 1, the tree is considered to be unbalanced. The

term height difference refers to the difference in height between the child nodes on the left side

of a node and the right side, where a height refers to the number of nodes in the longest path

4 Goodrich, M. T., Tamassia, R. & Goldwasser, M. H., 2014. "11.3 AVL Trees" pg. 490, Data
Structures and Algorithms in Java. Sixth Edition ed. s.l.:Wiley.

 8

from a node down to a leaf (inclusive). Note that the term leaf is used to denote a node with no

children. Each side of a node will have a height, which means the height difference will be the

absolute value of the left height minus the right height (or vice versa). Some implementations

will give one side negative unit values for height and sum the values of the left and right heights

to obtain the difference. For an AVL Tree to be balanced, all nodes must have a height

difference of 0 or 1.

Now the AVL Tree algorithm will be looked into more closely. Please refer to the Java code

in Appendix A1 (page 33) and Appendix A2 (page 37) for the AVL Tree algorithm being

examined.

The insert() function from AvlTree.java is shown below:

Figure 2.2.1: AvlTree insert() function5

5 Weiss, M. A., n.d. AvlTree.java. [Online]

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java
[Accessed January 2017].

 9

Referring to Figure 2.2.1, the insert() function takes a recursive approach to inserting values

into the tree. The parameter x refers to the value to be inserted and the parameter t refers to the

current node, starting with the root node.

How the insert() function restructures the tree after insertion depends on the height property of

the nodes. Balancing is required when the condition on line 6 or line 13 is true. That is, when

the height difference of the node t is equal to 2. When this condition is satisfied, two possible

methods of restructuring are possible depending on the condition on line 7 or line 14. Note that

restructuring, if required, will occur after the value is actually inserted on line 5 or line 12.

For the situation where a node is inserted to the left or right child of the node t and the height

different of t is 2 (line 6 or line 13 from Figure 2.2.1 is true):

Note: for all AVL tree diagrams below, the number at the top-right of a node is the height

difference of that node.

1. If the value is being inserted to the left of t (line 4 from Figure 2.2.1 is true) and x is

less than the value of the left child of t (line 7 from Figure 2.2.1 is true) the function

rotateWithLeftChild() will be executed and t will be set to the function's return value.

The Java code for this function is shown below.

Figure 2.2.2: AvlTree rotateWithLeftChild() function6

6 Weiss, M. A., n.d. AvlTree.java. [Online]

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java
[Accessed January 2017].

 10

This will rotate the subtree of root t such that the new root is t's left child and the original

node t is this root's right child. A diagram illustrating this is shown below (where A is

inserted into a tree which has values C and B):

Figure 2.2.3: k2 and k1 after line 2 from Figure 2.2.2 is executed

Figure 2.2.4: k2 and k1 after line 3 and line 4 from Figure 2.2.2 are executed

Figure 2.2.5: k2 and k1 after line 5 and line 6 from Figure 2.2.2 are executed

So the tree k2 from Figure 2.2.5 is returned.

 11

2. If the value is being inserted to the right of t (line 11 from Figure 2.2.1 is true) and x is

greater than the value of the right child of t (line 14 from Figure 2.2.1 is true), the

function rotateWithRightChild() will be executed and t will be set to the function's

return value. The Java code for this function is shown below.

Figure 2.2.6: AvlTree rotateWithRightChild() function7

This will rotate the subtree of root t such that the new root is t's right child and the

original node t is this root's left child. A diagram illustrating this is shown below (where

C is inserted into a tree which has values A and B):

Figure 2.2.7: k1 and k2 after line 2 from Figure 2.2.6 is executed

7 Weiss, M. A., n.d. AvlTree.java. [Online]

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java
[Accessed January 2017].

 12

Figure 2.2.8: k1 and k2 after line 3 and line 4 from Figure 2.2.6 are executed

Figure 2.2.9: k1 and k2 after line 5 and line 6 from Figure 2.2.6 are executed

So the tree k2 from Figure 2.2.9 is returned.

3. If the value is being inserted to the left of t (line 4 from Figure 2.2.1 is true) and x is

greater than the value of the left child of t (line 7 from Figure 2.2.1 is false) the function

doubleWithLeftChild() will be executed and t will be set to the function's return value.

The Java code for this function is shown below.

Figure 2.2.10: AvlTree doubleWithLeftChild() function8

8 Weiss, M. A., n.d. AvlTree.java. [Online]

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java
[Accessed January 2017].

 13

This will rotate the subtree of root t's left child by the left child's right child and then

rotate t by its left child. A diagram illustrating this is shown below (where B is inserted

into a tree which has values C and A):

Figure 2.2.11: initial value of k3 from Figure 2.2.10

Figure 2.2.12: k3 after line 2 from Figure 2.2.10 is executed

 14

Figure 2.2.13: k3 after line 3 from Figure 2.2.10 is executed

 So the value of k3 from Figure 2.2.13 is returned.

4. If the value is being inserted to the right of t (line 11 from Figure 2.2.1 is true) and x is

less than the value of the right child of t (line 14 from Figure 2.2.1 is false), the function

doubleWithRightChild() will be executed and t will be set to the function's return value.

The Java code for this function is shown below.

Figure 2.2.14: AvlTree doubleWithRightChild() function9

This will rotate the subtree of root t's right child by the right child's left child and then

rotate t by its right child. A diagram illustrating this is shown below (where B is inserted

into a tree which has values A and C):

9 Weiss, M. A., n.d. AvlTree.java. [Online]

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java
[Accessed January 2017].

 15

Figure 2.2.15: initial value of k1 from Figure 2.2.14

Figure 2.2.16: k1 after line 2 from Figure 2.2.14 is executed

Figure 2.2.17: k1 after line 3 from Figure 2.2.14 is executed

So the value of k1 from Figure 2.2.7 is returned.

 16

2.3 Red-Black Tree

A Red-Black Tree makes use of a number of rules which must be followed to maintain balance

of its nodes. Each node can be colored red or black (as the name suggests) and the rules which

must be followed relate to the coloring of nodes. Note that each inserted node is red by default.

The red-black rules are listed below:

1. The root node is always black. If any restructuring occurs such that the root node is

changed, it is important to ensure that the new root node is colored black.

2. The children of a red node must be black. For a value inserted as a child of a red

node, it must be colored black. In all other cases, an inserted node is colored red.

3. All paths from the root to a leaf of the tree have the same black depth. This means

that there must be the same number of black nodes for each and every path.10

Re-balancing of nodes will occur if one of the rules is broken. For example, if a node is inserted

as a child of a red node (which itself is inserted as a red node), restructuring will need to occur

since the 2nd rule is violated.

When a node, X, is inserted and restructuring is required (a rule is violated), there are two

possible situations which can occur and each situation will have a different approach to re-

balancing the area of the tree which requires it. Let P be the parent of X, let S be the sibling of

the parent and let G be the grandparent of X.

1. If S is black or null, then restructuring followed by re-coloring occurs:

10 Goodrich, M. T., Tamassia, R. & Goldwasser, M. H., 2014. Data Structures and Algorithms

in Java. Sixth Edition ed. s.l.:Wiley.

 17

Another example is shown below:

X is inserted as a red node and the red

child rule is violated.

From X, P and G put in order from lowest

to highest, the middle value, P, is selected

to be the new root node of the subtree and

becomes a parent of the other two values:

X and G. G will inherit P's left subtree:

subtree 1 as its left child.

Finally, re-coloring occurs so that the tree

can follow the rules set.

Figure 2.3.1 (a): Red-Black Tree with X inserted

Figure 2.3.1 (b): Red-Black Tree restructured

Figure 2.3.1 (c): Red-Black Tree re-colored

 18

2. If S is red, then there is only need for re-coloring to ensure the tree follows the rules.

X is inserted as a red node and the red

child rule is violated.

From X, P and G put in order from lowest

to highest, the middle value, X, is selected

to be the new root node of the subtree and

becomes a parent of the other two values:

P and G.

Finally, re-coloring occurs so that the tree

can follow the rules set.

Figure 2.3.2 (a): Red-Black Tree with X inserted

Figure 2.3.2 (b): Red-Black restructured

Figure 2.3.2 (c): Red-Black Tree re-colored

 19

The only exception for this situation is if G is the root node of the tree. If this is the case, it

must be colored black in order to follow the black root rule.

After successive insertions, the tree is gradually re-balanced. Seeing the Red-Black Tree

algorithm, it may be apparent that the AVL Tree algorithm takes more care in re-balancing

itself. This may be the case. This point will be discussed further in section 3 of the essay.

Now the Red-Black Tree algorithm will be looked into more closely. Please refer to the Java

code in Appendix A3 (page 38) and Appendix A4 (page 42) for the Red-Black Tree algorithm

being examined.

The next part will not be looked into in as much detail as the AVL Tree algorithm was. This is

because the Red-Black Tree algorithm has been described in theory in a good amount of detail

above. Additionally, the implementation below does not handle the restructuring in exactly the

same way as described above. However, the same result will be obtained and with the same

processes as above (such as rotations and re-colorings).

X is inserted as a red node and the red

child rule is violated.

Since S is red, re-coloring is done on P, G

and S to ensure the tree follows the rules.

Figure 2.3.3 (a): Red-Black Tree with X inserted

Figure 2.3.3 (b): Red-Black Tree re-colored

 20

Firstly, it is important to know that there are variables defined for the RedBlackTree Java class

which are used in the insertion operation. These will not be explained in much detail as they

are only either constants or temporary variables used to aid the insertion process as well as

some other processes which will not be looked into.

Figure 2.3.4: RedBlackTree constants and temporary variables function11

The only important thing to note here is the header variable, which points to the root of the

tree, must be set to the lowest possible comparable value when the RedBlackTree class is

instantiated (for example, if 32-bit integers are to be inserted into the tree, the predefined

constant: Integer.MIN_VALUE (which is approximately -2.15 billion) should be used).

The insert() function is shown below:

11 Weiss, M. A., n.d. RedBlackTree.java. [Online]
Available at:

https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java
[Accessed January 2017].

 21

Figure 2.3.5: RedBlackTree insert() function12

For this implementation, the function uses a loop (lines 5-15 from Figure 2.3.5) to determine

where in the tree to insert the node. The important restructuring part, however, is in the

handleReorient() function, which is called both in the loop when the current node's children

are red and at the end of the insert() function. The function is shown below:

12 Weiss, M. A., n.d. RedBlackTree.java. [Online]
Available at:

https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java
[Accessed January 2017].

 22

Figure 2.3.6: RedBlackTree handleReorient() function13

The handleReorient() function will handle both re-coloring and rotations for nodes to maintain

balance. To explain the program in Figure 2.3.6, lines 3-5 will handle the re-coloring for the

current node and its children. As seen with the explained theory above, there will be a color

change for the grandparent if the parent is red (red-child rule violation). Then, depending on

the comparable properties of the item being inserted and the current node's parent and

grandparent (lines 9-10), there will be a rotation by the parent and the grandparent, the value

of which is returned and set to the parent node. Then, the current node will be set to the return

value of a rotation by the great grandparent. Although great grandparent wasn't mentioned

when the theory was described in detail, it is used in the implementation in order for a rotated

subtree with a grandfather root to be set as a child of the great grandfather (please refer to

Appendix A3 for further information about how this works). Finally, the header color is set to

black to satisfy the black root rule.

The rotate() function consists of code for a standard Red-Black rotation. This will not be

explained in detail. More information about this can be found in Appendix A3.

13 Weiss, M. A., n.d. RedBlackTree.java. [Online]
Available at:

https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java
[Accessed January 2017].

 23

3. Hypothesis and Applied Theory

The theory of both tree algorithms have been described and explained in a good amount of

detail. Now it is important to consider which of the two algorithms is most efficient. Time

complexity was brought up at the beginning of this essay but not applied when the two

algorithms were explored. An experiment will be carried out to measure the time taken for each

tree to add sets of values. It should be said that both trees have an efficiency of 𝑂(log2 𝑁) for

insertion14. However, this efficiency is for the physical insertion of the values and doesn't take

into account the re-balancing required after it. This experiment will take into account the re-

balancing required after insertions as time is physically being measured.

It was mentioned earlier that the AVL tree may take more care in ensuring that it is balanced.

This is due to the AVL Tree algorithm checking the height difference of all traversed nodes

after each insertion and re-balancing itself if any height difference is 2. The RedBlack Tree

algorithm, however, re-balances and/or recolors nodes based on violated rules. Hence, the

RedBlack Tree algorithm will do less physical restructuring than the AVL Tree algorithm.

The experiment will measure the relationship between time, y, and size of sets being inserted,

x. By varying the size of the sets of values inserted into the tree, a clear relationship between

these two variables should be determined and how this relationship differs between the AVL

tree and the Red-Black tree should be seen.

I hypothesize that there will be a logarithmic relationship between x and y as described above.

I also believe that the Red-Black tree will insert values and re-balance itself in a lower time

14 Rowell, E., n.d. Know Thy Complexities. [Online]

Available at: http://bigocheatsheet.com/
[Accessed April 2017].

 24

than the AVL tree for all sets of data. Since the efficiencies of the whole of both insertion

processes are being measured, there will only be need to measure the time it takes for a number

of values to be inserted into a tree using the insert() functions of both tree classes.

4. Methodology

The experimental procedure was briefly described and explained above. The specific procedure,

with reference to the Java code being run, will be explained in this section.

4.1 Independent variables

The independent variables in this procedure refer to what will be changed in the experiment. I

will be changing the size of the sets of data. Each set of data will be successive integers from

1 to N, where N is increased in increments of 100, starting from 100 and ending at 1000 (so

there will be a total of 10 sets of data). My decision of incrementing N by 100 is to ensure that

there aren't too many points when the graphs are plotted, but so that enough data is inserted to

illustrate the trees' natures and to plot a suitable graph in which a clear enough relationship can

be seen. My decision for the data to be in ascending order is to maximize the amount of time

it takes for both trees to balance the data.

4.2 Dependent variable

The only dependent variable being measured in this experiment is the time it takes for each

set of data to be inserted into both trees. This will be measured using difference of the System

Nanotimes before and after insertion and will give a time in nanoseconds. This is the most

precise measure of time possible by the system being used.

 25

4.3 Controlled variables

Variable Description
Specifications

(if applicable)

Computer and

operating system

used

I will be running the program

on my laptop: a MacBook Pro

Version: 10.10.5

Processor: 2.6 GHz Intel Core i5

Memory: 8GB 1600 MHz DDR3

Integrated

Development

Environment

(IDE) used

I will be running the program

using a single IDE

IDE: IntelliJ IDEA Ultimate

2017.2.1

Build: #IU-172.3544.35

Java Runtime Environment:

1.8.0_152-release-915-b6 x86_64

Java Virtual Machine: OpenJDK

64-Bit Server VM

Same algorithm

used

The algorithm from Appendix

A will be used in this

experiment.

Same functions

called

The same functions will be

called in the programs for

every set being tested.

Same data type

used

The experiment will be only

using the int (32-bit integer)

data type for all sets being

tested.

4.4 Procedure

The procedure for the experiment is as follows:

1. Set up the program to insert all sets of values into both AVL and Red-Black Tree

algorithms and time each insertion. Output the time in nanoseconds for each of the trees

into a text file (please refer to Appendix B (page 43) for the program used to test the

sets).

2. Run the program to have it output the times of all insertions of the sets.

3. Take averages of the times for each set on each tree.

 26

5. Data processing and graph

5.1 Data collection and processing

Below shows the average times for all sets which have been tested. For raw, un-averaged results,

please refer to Appendix C (page 43).

 Average Time (nanoseconds)

Set Size AVL Tree Red-Black Tree

100 535878 409542

200 832316 524580

300 1097632 841614

400 1094302 1186661

500 1278388 1761996

600 1368342 1956118

700 1710333 2252886

800 1755713 2517534

900 1830463 2590616

1000 2587892 2629516

Figure 5.1.1: Average insertion times of sets tested for both trees

5.2 Graph of time against set size

Below shows a graph of time against set size for the sets of values inserted into both trees.

 27

Key: Blue = AVL Tree, Red = Red-Black Tree

Figure 5.2.1: Graph of insertion time (y) against number of values in set (x) of the AVL and Red-

Black trees

6. Results discussion

My hypothesis of the logarithmic relationship has been shown to be correct as seen in the graph.

However, my other hypothesis of the red-black tree having a better efficiency in terms of time

complexity was shown to not be true for all set values. Referring to the graph in Figure 5.2.1,

there is a point of intersection between the two graphs at the coordinates: (954000, 240),

approximately. This shows that set of size 240 or below will be inserted into the Red-Black

tree at a lower time than the AVL tree, but when the set size is over 240, it will be inserted into

the AVL tree at a lower time than the Red-Black tree. Upon seeing this, I was astounded and

wondered why this was the case.

 28

I initially thought that perhaps that it was due to the problem with the Red-Black tree addressed

previously, in which less checks made as values are inserted would mean that the Red-Black

tree would gradually tend to become unbalanced. This would then increase insertion time as

more nodes were added.

Another possibility which I considered was an issue with the algorithm implementation I used.

As more data is inserted into the Red-Black tree, there must be more variables to set multiple

times (as a loop is used). Since the Red-Black implementation relied on these variables to

handle insertions, it may have just been the time taken for these variables to be set which

affected the overall insertion time after a certain number of insertions. Additionally, the AVL

implementation made use of recursion (unlike the Red-Black implementation). This could have

potentially affected the time taken for the AVL Tree to be lower than the Red-Black tree after

a certain number of values are inserted.

I have looked into the maximum heights of an AVL Tree and a Red-Black Tree with N values

and have found out that the maximum height from the root to the deepest leaf is approximately

𝟏. 𝟒𝟒 𝐥𝐨𝐠𝟐(𝑵 + 𝟐) for an AVL Tree15 and approximately 𝟐 𝐥𝐨𝐠𝟐(𝑵 + 𝟏) for a Red-Black

Tree16. Plotting these values on a graph with x-axis being N gives:

15 Alexander, E., n.d. AVL Trees. [Online]
Available at: http://pages.cs.wisc.edu/~ealexand/cs367/NOTES/AVL-Trees/index.html

[Accessed January 2017].
16 Narahari, Y., n.d. Height of a Red-Black Tree. [Online]

Available at: http://lcm.csa.iisc.ernet.in/dsa/node115.html
[Accessed August 2017].

 29

Figure 6.1.1: Graphs of 2 log2(x+1) and 1.44 log2(x+2)

1.44 log2(𝑁 + 2) [AVL Tree] = Blue Graph

2 log2(𝑁 + 1) [Red-Black Tree] = Red Graph

As can be seen, the shape of the graphs in Figure 6.1.1 matches those of the graphs in Figure

5.2.1, which were obtained from the experiment.

7. Conclusion

This experiment aimed to use the theory behind AVL and Red-Black trees explained in section

2 of the essay and practically apply it to see the relationship between insertion time and number

of values inserted into the AVL and Red-Black trees. As expected, there is a logarithmic

relationship between time and number of values inserted which is apparent in the graph in

Figure 5.2.1. To take it further, the investigation also aimed to use the theory behind the two

trees to see how the time-set size relationship differed for each algorithm.

 30

Ordered sets were used to ensure that every insertion would cause required restructuring. Due

to this, the Red-Black Tree would increase in height more than the AVL Tree would since the

Red-Black Tree would have a larger height on the right side of the root node. Since the AVL

Tree takes better care when balancing itself (rotation for every ordered insertion), however, the

AVL Tree does not run into this problem. Hence, I am concluding: for ordered sets, the Red-

Black Tree is more insertion-efficient than the AVL Tree for values < 240. However, the

AVL Tree is more insertion-efficient than the Red-Black Tree for values > 240.

To answer the research question of this essay, my answer would be that the re-balancing

algorithm efficiency of both the AVL Tree and the Red-Black tree in terms of time complexity

would depend on the number of values inserted as well as how the values are inserted. As seen

with the graph of results, the Red-Black Tree is more efficient than the AVL Tree is for a few

ordered values. However, with larger ordered values, the AVL Tree proves to be more efficient

than the Red-Black tree and as values are increased even further beyond 1000, the AVL Tree,

in the long run, proves to be more insertion-efficient than that of the Red-Black Tree.

 31

Bibliography

Adamchik, V. S., 2009. Algorithmic Complexity. [Online]
Available at: https://www.cs.cmu.edu/~adamchik/15-

121/lectures/Algorithmic%20Complexity/complexity.html
[Accessed June 2017].

Alexander, E., n.d. AVL Trees. [Online]
Available at: http://pages.cs.wisc.edu/~ealexand/cs367/NOTES/AVL-Trees/index.html
[Accessed 23 August 2017].

Dictionary.com Unabridged, n.d. Binary. [Online]
Available at: http://www.dictionary.com/browse/binary
[Accessed May 2017].

Goodrich, M. T., Tamassia, R. & Goldwasser, M. H., 2014. Data Structures and Algorithms in
Java. Sixth Edition ed. s.l.:Wiley.

Massachusetts Institute of Technology, 2003. Big O Notation. [Online]
Available at: http://web.mit.edu/16.070/www/lecture/big_o.pdf
[Accessed June 2017].

Narahari, Y., n.d. Height of a Red-Black Tree. [Online]
Available at: http://lcm.csa.iisc.ernet.in/dsa/node115.html
[Accessed August 2017].

Paton, J., n.d. Red-Black Trees. [Online]
Available at: http://pages.cs.wisc.edu/~paton/readings/Red-Black-Trees
[Accessed January 2017].

Rowell, E., n.d. Know Thy Complexities. [Online]
Available at: http://bigocheatsheet.com/
[Accessed April 2017].

Weiss, M. A., n.d. AvlNode.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlNode.java
[Accessed January 2017].

Weiss, M. A., n.d. AvlTree.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java

[Accessed January 2017].

Weiss, M. A., n.d. RedBlackNode.java. [Online]

Available at:
https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackNode.java

[Accessed January 2017].

 32

Weiss, M. A., n.d. RedBlackTree.java. [Online]
Available at:
https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java
[Accessed January 2017].

 33

Appendices

Appendix A: Tree/TreeNode Libraries

A1: AvlTree.java (Weiss, n.d.)

// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert(x) --> Insert x
// void remove(x) --> Remove x (unimplemented)
// Comparable find(x) --> Return item that matches x
// Comparable findMin() --> Return smallest item
// Comparable findMax() --> Return largest item
// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty() --> Remove all items
// void printTree() --> Print tree in sorted order

/**
 * Implements an AVL tree.
 * Note that all "matching" is based on the compareTo method.
 *
 * @author Mark Allen Weiss
 */
public class AvlTree {
 /**
 * Construct the tree.
 */
 public AvlTree() {
 root = null;
 }

 /**
 * Insert into the tree; duplicates are ignored.
 *
 * @param x the item to insert.
 */
 public void insert(Comparable x) {
 root = insert(x, root);
 }

 /**
 * Remove from the tree. Nothing is done if x is not found.
 *
 * @param x the item to remove.
 */
 public void remove(Comparable x) {

 34

 System.out.println("Sorry, remove unimplemented");
 }

 /**
 * Find the smallest item in the tree.
 *
 * @return smallest item or null if empty.
 */
 public Comparable findMin() {
 return elementAt(findMin(root));
 }

 /**
 * Find the largest item in the tree.
 *
 * @return the largest item of null if empty.
 */
 public Comparable findMax() {
 return elementAt(findMax(root));
 }

 /**
 * Find an item in the tree.
 *
 * @param x the item to search for.
 * @return the matching item or null if not found.
 */
 public Comparable find(Comparable x) {
 return elementAt(find(x, root));
 }

 /**
 * Make the tree logically empty.
 */
 public void makeEmpty() {
 root = null;
 }

 /**
 * Test if the tree is logically empty.
 *
 * @return true if empty, false otherwise.
 */
 public boolean isEmpty() {
 return root == null;
 }

 /**
 * Print the tree contents in sorted order.
 */
 public void printTree() {

 35

 if (isEmpty())
 System.out.println("Empty tree");
 else
 printTree(root);
 }

 /**
 * Internal method to get element field.
 *
 * @param t the node.
 * @return the element field or null if t is null.
 */
 private Comparable elementAt(AvlNode t) {
 return t == null ? null : t.element;
 }

 /**
 * Internal method to insert into a subtree.
 *
 * @param x the item to insert.
 * @param t the node that roots the tree.
 * @return the new root.
 */
 private AvlNode insert(Comparable x, AvlNode t) {
 if (t == null)
 t = new AvlNode(x, null, null);
 else if (x.compareTo(t.element) < 0) {
 t.left = insert(x, t.left);
 if (height(t.left) - height(t.right) == 2)
 if (x.compareTo(t.left.element) < 0)
 t = rotateWithLeftChild(t);
 else
 t = doubleWithLeftChild(t);
 } else if (x.compareTo(t.element) > 0) {
 t.right = insert(x, t.right);
 if (height(t.right) - height(t.left) == 2)
 if (x.compareTo(t.right.element) > 0)
 t = rotateWithRightChild(t);
 else
 t = doubleWithRightChild(t);
 } else
 ; // Duplicate; do nothing
 t.height = max(height(t.left), height(t.right)) + 1;
 return t;
 }

 /**
 * Internal method to find the smallest item in a subtree.
 *
 * @param t the node that roots the tree.
 * @return node containing the smallest item.

 36

 */
 private AvlNode findMin(AvlNode t) {
 if (t == null)
 return t;

 while (t.left != null)
 t = t.left;
 return t;
 }

 /**
 * Internal method to find the largest item in a subtree.
 *
 * @param t the node that roots the tree.
 * @return node containing the largest item.
 */
 private AvlNode findMax(AvlNode t) {
 if (t == null)
 return t;

 while (t.right != null)
 t = t.right;
 return t;
 }

 /**
 * Internal method to find an item in a subtree.
 *
 * @param x is item to search for.
 * @param t the node that roots the tree.
 * @return node containing the matched item.
 */
 private AvlNode find(Comparable x, AvlNode t) {
 while (t != null)
 if (x.compareTo(t.element) < 0)
 t = t.left;
 else if (x.compareTo(t.element) > 0)
 t = t.right;
 else
 return t; // Match

 return null; // No match
 }

 /**
 * Internal method to print a subtree in sorted order.
 *
 * @param t the node that roots the tree.
 */
 private void printTree(AvlNode t) {
 if (t != null) {

 37

 printTree(t.left);
 System.out.println(t.element);
 printTree(t.right);
 }
 }

 /**
 * Return the height of node t, or -1, if null.
 */
 private static int height(AvlNode t) {
 return t == null ? -1 : t.height;
 }

 /**
 * Return maximum of lhs and rhs.
 */
 private static int max(int lhs, int rhs) {
 return lhs > rhs ? lhs : rhs;
 }

 /**
 * Rotate binary tree node with left child.
 * For AVL trees, this is a single rotation for case 1.
 * Update heights, then return new root.
 */
 private static AvlNode rotateWithLeftChild(AvlNode k2) {
 AvlNode k1 = k2.left;
 k2.left = k1.right;
 k1.right = k2;
 k2.height = max(height(k2.left), height(k2.right)) + 1;
 k1.height = max(height(k1.left), k2.height) + 1;
 return k1;
 }

 /**
 * Rotate binary tree node with right child.
 * For AVL trees, this is a single rotation for case 4.
 * Update heights, then return new root.
 */
 private static AvlNode rotateWithRightChild(AvlNode k1) {
 AvlNode k2 = k1.right;
 k1.right = k2.left;
 k2.left = k1;
 k1.height = max(height(k1.left), height(k1.right)) + 1;
 k2.height = max(height(k2.right), k1.height) + 1;
 return k2;
 }

 /**
 * Double rotate binary tree node: first left child
 * with its right child; then node k3 with new left child.

 38

 * For AVL trees, this is a double rotation for case 2.
 * Update heights, then return new root.
 */
 private static AvlNode doubleWithLeftChild(AvlNode k3) {
 k3.left = rotateWithRightChild(k3.left);
 return rotateWithLeftChild(k3);
 }

 /**
 * Double rotate binary tree node: first right child
 * with its left child; then node k1 with new right child.
 * For AVL trees, this is a double rotation for case 3.
 * Update heights, then return new root.
 */
 private static AvlNode doubleWithRightChild(AvlNode k1) {
 k1.right = rotateWithLeftChild(k1.right);
 return rotateWithRightChild(k1);
 }

 /**
 * The tree root.
 */
 private AvlNode root;
}

A2: AvlNode.java (Weiss, n.d.)

// Basic node stored in AVL trees
// Note that this class is not accessible outside
// of package DataStructures

class AvlNode {
 // Constructors
 AvlNode(Comparable theElement) {
 this(theElement, null, null);
 }

 AvlNode(Comparable theElement, AvlNode lt, AvlNode rt) {
 element = theElement;
 left = lt;
 right = rt;
 height = 0;
 }

 // Friendly data; accessible by other package routines
 Comparable element; // The data in the node
 AvlNode left; // Left child
 AvlNode right; // Right child
 int height; // Height
}

 39

A3: RedBlackTree.java (Weiss, n.d.)

// RedBlackTree class
//
// CONSTRUCTION: with a negative infinity sentinel
//
// ******************PUBLIC OPERATIONS*********************
// void insert(x) --> Insert x
// void remove(x) --> Remove x (unimplemented)
// Comparable find(x) --> Return item that matches x
// Comparable findMin() --> Return smallest item
// Comparable findMax() --> Return largest item
// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty() --> Remove all items
// void printTree() --> Print tree in sorted order

/**
 * Implements a red-black tree.
 * Note that all "matching" is based on the compareTo method.
 *
 * @author Mark Allen Weiss
 */
public class RedBlackTree {

 /**
 * Construct the tree.
 *
 * @param negInf a value less than or equal to all others.
 */
 public RedBlackTree(Comparable negInf) {
 header = new RedBlackNode(negInf);
 header.left = header.right = nullNode;
 }

 /**
 * Insert into the tree. Does nothing if item already present.
 *
 * @param item the item to insert.
 */
 public void insert(Comparable item) {
 current = parent = grand = header;
 nullNode.element = item;

 while (current.element.compareTo(item) != 0) {
 great = grand;
 grand = parent;
 parent = current;
 current = item.compareTo(current.element) < 0 ?
 current.left : current.right;

 // Check if two red children; fix if so

 40

 if (current.left.color == RED && current.right.color == RED)
 handleReorient(item);
 }

 // Insertion fails if already present
 if (current != nullNode)
 return;
 current = new RedBlackNode(item, nullNode, nullNode);

 // Attach to parent
 if (item.compareTo(parent.element) < 0)
 parent.left = current;
 else
 parent.right = current;
 handleReorient(item);
 }

 /**
 * Remove from the tree.
 * Not implemented in this version.
 *
 * @param x the item to remove.
 */
 public void remove(Comparable x) {
 System.out.println("Remove is not implemented");
 }

 /**
 * Find the smallest item the tree.
 *
 * @return the smallest item or null if empty.
 */
 public Comparable findMin() {
 if (isEmpty())
 return null;

 RedBlackNode itr = header.right;

 while (itr.left != nullNode)
 itr = itr.left;

 return itr.element;
 }

 /**
 * Find the largest item in the tree.
 *
 * @return the largest item or null if empty.
 */
 public Comparable findMax() {
 if (isEmpty())

 41

 return null;

 RedBlackNode itr = header.right;

 while (itr.right != nullNode)
 itr = itr.right;

 return itr.element;
 }

 /**
 * Find an item in the tree.
 *
 * @param x the item to search for.
 * @return the matching item or null if not found.
 */
 public Comparable find(Comparable x) {
 nullNode.element = x;
 current = header.right;

 for (; ;) {
 if (x.compareTo(current.element) < 0)
 current = current.left;
 else if (x.compareTo(current.element) > 0)
 current = current.right;
 else if (current != nullNode)
 return current.element;
 else
 return null;
 }
 }

 /**
 * Make the tree logically empty.
 */
 public void makeEmpty() {
 header.right = nullNode;
 }

 /**
 * Test if the tree is logically empty.
 *
 * @return true if empty, false otherwise.
 */
 public boolean isEmpty() {
 return header.right == nullNode;
 }

 /**
 * Print the tree contents in sorted order.
 */

 42

 public void printTree() {
 if (isEmpty())
 System.out.println("Empty tree");
 else
 printTree(header.right);
 }

 /**
 * Internal method to print a subtree in sorted order.
 *
 * @param t the node that roots the tree.
 */
 private void printTree(RedBlackNode t) {
 if (t != nullNode) {
 printTree(t.left);
 System.out.println(t.element);
 printTree(t.right);
 }
 }

 /**
 * Internal routine that is called during an insertion
 * if a node has two red children. Performs flip and rotations.
 *
 * @param item the item being inserted.
 */
 private void handleReorient(Comparable item) {
 // Do the color flip
 current.color = RED;
 current.left.color = BLACK;
 current.right.color = BLACK;

 if (parent.color == RED) // Have to rotate
 {
 grand.color = RED;
 if ((item.compareTo(grand.element) < 0) !=
 (item.compareTo(parent.element) < 0))
 parent = rotate(item, grand); // Start dbl rotate
 current = rotate(item, great);
 current.color = BLACK;
 }
 header.right.color = BLACK; // Make root black
 }

 /**
 * Internal routine that performs a single or double rotation.
 * Because the result is attached to the parent, there are four cases.
 * Called by handleReorient.
 *
 * @param item the item in handleReorient.
 * @param parent the parent of the root of the rotated subtree.

 43

 * @return the root of the rotated subtree.
 */
 private RedBlackNode rotate(Comparable item, RedBlackNode parent) {
 if (item.compareTo(parent.element) < 0)
 return parent.left = item.compareTo(parent.left.element) < 0 ?
 rotateWithLeftChild(parent.left) : // LL
 rotateWithRightChild(parent.left); // LR
 else
 return parent.right = item.compareTo(parent.right.element) < 0 ?
 rotateWithLeftChild(parent.right) : // RL
 rotateWithRightChild(parent.right); // RR
 }

 /**
 * Rotate binary tree node with left child.
 */
 static RedBlackNode rotateWithLeftChild(RedBlackNode k2) {
 RedBlackNode k1 = k2.left;
 k2.left = k1.right;
 k1.right = k2;
 return k1;
 }

 /**
 * Rotate binary tree node with right child.
 */
 static RedBlackNode rotateWithRightChild(RedBlackNode k1) {
 RedBlackNode k2 = k1.right;
 k1.right = k2.left;
 k2.left = k1;
 return k2;
 }

 private RedBlackNode header;
 private static RedBlackNode nullNode;

 static // Static initializer for nullNode
 {
 nullNode = new RedBlackNode(null);
 nullNode.left = nullNode.right = nullNode;
 }

 static final int BeLACK = 1; // Black must be 1
 static final int RED = 0;

 // Used in insert routine and its helpers
 private static RedBlackNode current;
 private static RedBlackNode parent;
 private static RedBlackNode grand;
 private static RedBlackNode great;

 44

}

A4: RedBlackNode.java (Weiss, n.d.)

// Basic node stored in red-black trees
// Note that this class is not accessible outside
// of package DataStructures

class RedBlackNode {
 // Constructors
 RedBlackNode(Comparable theElement) {
 this(theElement, null, null);
 }

 RedBlackNode(Comparable theElement, RedBlackNode lt, RedBlackNode rt) {
 element = theElement;
 left = lt;
 right = rt;
 color = RedBlackTree.BLACK;
 }

 // Friendly data; accessible by other package routines
 Comparable element; // The data in the node
 RedBlackNode left; // Left child
 RedBlackNode right; // Right child
 int color; // Color
}

Appendix B: Program used in the experiment

int set = 100; // Change and re-run program

for (int trial = 1; trial <= 10; trial++) {
 AvlTree avl = new AvlTree();
 RedBlackTree rb = new RedBlackTree(Double.MIN_VALUE);

 long startAVL = System.nanoTime();
 for (double i = 1; i <= set; i++)
 avl.insert(i);
 long endAVL = System.nanoTime();

 long startRB = System.nanoTime();
 for (double i = 1; i <= set; i++)
 rb.insert(i);
 long endRB = System.nanoTime();

 System.out.println("AVL Trial " + trial + ": " + (endAVL - startAVL));
 System.out.println("RB Trial " + trial + ": " + (endRB - startRB));
}

 45

Appendix C: Raw data of times obtained

C1: Raw and average times for AVL Tree

Set Size 100 200 300 400 500 600 700 800 900 1000

Trial 1 2581280 5983053 6669072 4445067 7613113 5983508 6363343 11501305 6973136 11601223

Trial 2 488279 397182 1935790 2275095 504328 851024 1854499 1057391 910888 1867284

Trial 3 410746 232996 631174 772049 522816 724961 646244 1945648 1170284 1054020

Trial 4 272462 189196 275478 696903 1046400 434082 2021447 842967 1338265 1087820

Trial 5 985350 133719 229312 464093 441713 438329 1745406 259145 988840 2134978

Trial 6 135056 161752 199271 1048937 1008765 550976 1500212 152406 921561 6765564

Trial 7 203909 352340 238741 274836 410040 1159039 736276 1085024 3434569 390173

Trial 8 68037 167254 190581 308889 410341 499898 507880 362423 481209 554644

Trial 9 109732 472998 374234 329820 410973 521406 1560302 150863 1771136 195349

Trial 10 103929 232673 232664 327328 415393 2520195 167725 199961 314738 227860

Average 535878 832316 1097632 1094302 1278388 1368342 1710333 1755713 1830463 2587892

C2: Raw and average times for Red-Black Tree

Set Size 100 200 300 400 500 600 700 800 900 1000

Trial 1 897100 1572146 4719353 3807996 4511711 4618547 3827439 5471420 7612243 4993088

Trial 2 398344 2047101 445611 4682227 415191 444595 565356 4396306 957851 1071088

Trial 3 1603153 419289 471936 779954 1291588 502841 458196 9157614 8801192 2338015

Trial 4 771489 161819 236261 365249 383348 513776 395184 631247 5122684 6833644

Trial 5 50030 136920 1074495 325017 669508 4761305 9042658 749707 851016 3701804

Trial 6 67463 196400 272305 352181 447824 6479630 2272656 1919854 1329396 949009

Trial 7 100926 175193 273745 405009 7965308 831211 1359304 967175 331589 950182

Trial 8 69530 163721 236786 361201 1165498 462080 730359 609491 300666 3204756

Trial 9 68191 170886 436382 351122 422865 429500 3276667 557460 290566 1265100

Trial 10 69194 202322 249268 436653 347118 517693 601042 715065 308959 988471

Average 409542 524580 841614 1186661 1761996 1956118 2252886 2517534 2590616 2629516

Appendix D: Permission letter from Dr. Mark Allen Weiss

 46

 D1: Permission email sent to Dr. Weiss

D2: Reply email from Dr. Weiss

