Computer Science Extended Essay:
Investigating the time complexities of the
AVL Tree and Red-Black Tree insertion

algorithms

Research question:

How does the re-balancing algorithm
efficiency of an Adelson-Velskii and Landis
Tree compare to that of a Red-Black Tree in
terms of time complexity upon insertion of

values?

Essay word count: 3997

Table of Contents

1. INTRODUCTION ..uutttiiiinteiiiineesisisssteissssssesssssssessssssssessssssssessssssssessessssessssssssssssssssssssssssnes 3
N I o = G 3
2.1 BINARY SEARCH TREES........uttteiitttteeaittteeessitseeeeaasssteessnssseeesassssesssnssseessssssasesssssseeessnssseees 3
2.2 ADELSON-VELSKII AND LANDIS TREEtttieiitititeeiiiieeeastreeeeesnsereeesssseeesasnsseeessnnssseeessnssseeens 7
2.3 RED-BLACK TREEiiiittittitteeeeeeeittteateeeeeeessstttaaeeeeaeeesasnsnntsaeeeeaeessansnsssseeeaeesesseannnsnenees 16

3. HYPOTHESIS AND APPLIED THEORY ..uuutiiiiiiiiiiiiiieesinntiesssnseessssssssssssssnessssssssesssns 23
4. METHODOLOGY iiiicietiiiintinisisneesisseesssssstesssssssssssssssssessssssssssssssssssssssssssesssssssssssssssssasss 24
4.1 INDEPENDENT VARIABLES.etttttetiiiettitttteeeeessssssttttteteeaessassnstsseeeeasesssssssnssseeeeeesssansnsssseeees 24
4.2 DEPENDENT VARIABLEceittttteeiittteeeittteeeeeitteeeestaeeeesassaeeeassssssaeesstseeesassaeeeasssseeeesnnsrees 24
4.3 CONTROLLED VARIABLESvvtttteeeeiiettittttteeesssesssttttteeeeaessssssnsssseseasessssssssnssseeeeeesssmnsssssseeees 25
4. PROCEDUREuutttteeitttte e ettt e e s ettt e e e estteeeeaastteeeeanaeeeeeeensteeeeaansbeeeeanbeeee e e nsneeeeeannseeeennnnes 25

5. DATA PROCESSING AND GRAPH.....cttiiiittiniiretnsesireessscsnsessssssnessssssssssssssssnsesssssssassssns 26
5.1 DATA COLLECTION AND PROCESSING.cuttetiutreteeeiutteeesssineneeessnsneeeessnseeesssssseeesssnssseesssnseees 26
5.2 GRAPH OF TIME AGAINST SET SIZE ...eeeiuttttetiiiieeeeiiiteeeeeniiteeessitteeessntneeesssibsseeessnnreeeesnnnneeas 26
6. RESULTS DISCUSSION ..uuutiiiiiinieiiisieesiiisnttessssssesssssssssssssssssesssssssssessssssssssssssssesssssssssssssns 27
7. CONCLUSION iiiiiiiicccienteteesiiscsssnnneresesssessssssnsesesssssessssssnssssssssssesssssanssessssssssesssssnnssassssns 29
BIBLIOGRAPHY ..ceiiiiiiiiiiicienreessssissssssnsessesssssessssssnssessesssssssssssssssasssssssssssansassasssssssssssnnses 31
APPENDICESoeiriiiiiiiccirnnteeeessisnesssssneresesssssssssnnressssssssesssssanssesssssssssssansssssesssssssssssansaasssses 33
APPENDIX A: TREE/TREENODE LIBRARIES.ceeiitttteeiiiiiteeesiiteteeeasiaeeessisreeesasneeessnnnnseeessseees 33
AL: AvITree.java (Weiss, N.0.) coeeeeeeeeeeeeeeeeeeee e 33

A2: AvINode.java (WeisS, N.0.) cecceeeeeeeeeeeeeeeeeeeeeee 38

A3: RedBlackTree.java (Weiss, N.0.) ccceeeeeeeeeeeeiieeeeeeeeeeee 39

A4: RedBlackNode.java (Weiss, N.0.).cccceveeereieieeeeeeeeeeeeeeee 44
APPENDIX B: PROGRAM USED IN THE EXPERIMENT ...eeetitiiteeasieieeeesntereeessnsseeesssneneessnnseeessnsenees 44
APPENDIX C: RAW DATA OF TIMES OBTAINED ...cccuvvvieeiiiiiireeaietieeesssnnseeeessnsseeesasseeessnsnseesessnssees 45
C1: Raw and average times fOr AVL TreE. ...ttt e e e e e e e e e e e aa e 45

C2: Raw and average times for Red-Black Tree......ccoevveeeeeeieieeeecesieeeeee e e e e e e eeee e e e ee e 45
APPENDIX D: PERMISSION LETTER FROM DR. MARK ALLEN WEISS......cccoviiiieeiiiiiieesiiireee e 45
D1: Permission email Sent t0 Dr. WEISS.......coeieeiiiiiiiiiiiee e 46

D2: Reply email from DI WEISSccovuiiiiieeiiiieeeeiiitee ettt 46

1. Introduction

This essay will focus on the structure of binary searchtrees, a relatively complex data structure
which can be very useful in many applications. This essay will specifically look into the
Adelson-Velskii and Landis (AVL) Tree and the Red-Black Tree, which are two types of binary
search tree. Given a set of values inserted into both trees, the time complexity for the insertion
operations for both trees will be investigated. Time complexity is the term used to refer to the
amount of time taken for an algorithm to run given a set of input values of a certain sizel.
Hence, the question: How does the re-balancing efficiency of an Adelson-Velskii and Landis
Tree compare tothat of a Red-Black Tree interms of time complexity upon insertion of values?

This area links to Topic 5 of the IB Higher Level Computer Science course.

2. Theory

2.1 Binary Search Trees

A binary search tree is a data structure with a defined behavior and is the basis of the two trees
being looked into. The word binary refers to "being composed of two things'2. For trees, it
means each item in a tree must point to a maximum of two other items (referredto as children).
This means zero children or one child are also allowed. An item of a binary search tree is
commonly referred to as a node. This term will be used for the remainder of the essay to

describe values in trees.

! Adamchik, V. S., 2009. Algorithmic Complexity. [Online]
Available at: https://www.cs.cmu.edu/~adamchik/15-
121/lectures/Algorithmic%20Complexity/complexity.html
[Accessed June 2017].

2 Dictionary.com Unabridged, n.d. Binary. [Online]
Available at: http://www.dictionary.com/browse/binary
[Accessed May 2017].

A binary search tree must choose where to place a value when it is inserted. Each node in the
tree can be compared in some way (for example, numbers by size and text lexicographically).
Each node will have a left child pointer and a right child pointer, which points to another node
in the tree. The left child of a node must have a value 'less than' the node, which means the

right child must have a value 'greater than' the node.

When inserting a node:

1. If the tree is empty, the root of the tree (the top value or more commonly known as the
root node) is set to this node.

2. If aroot node exists and its value is 'greater than' the value being inserted, the same
process will occur with the root's left child.

3. Ifarootnode exists and its value is 'less than' the value being inserted, the same process
will occur with the root's right child.

4. This will occur until there isa position inthe tree where aleft child or right child doesn't

exist for a node. This will be where the new node is placed.

An example of a typical Binary Data Tree is shown in Figure 2.1.1 below.

Figure 2.1.1: Example of a Binary Data Tree

The 'Search' in 'Binary Search Tree' comes from the main purpose of using the structure in the

first place: searching it. Searching follows a similar process to insertion.

By organizing nodes in this structure, searching for values can happen very efficiently
compared to, say, a linear search. A notation used to measure the worst-case efficiency of an
algorithm is the Big-O notation® For an array, it is O(N), where N is the size of the array. For
binary search trees, the searching efficiency is O(log, N), which is a massive difference

compared to O(N) as shown in Figure 2.1.2 below.

3 Massachusetts Institute of Technology, 2003. Big O Notation. [Online]
Available at: http://web.mit.edu/16.070/www/lecture/big_o.pdf
[Accessed June 2017].

4
7
/
4l
7/
7
Ve
40
7/
7/
/
/
/s
/
, 7/
20
7/
7
7/
7
/7
7/
L
0 20 40 60 80

Figure 2.1.2: A graph to show the worst-case number of searches for the two data structures (y-
axis) over the number of values stored (x-axis)

Dashed line — Array
Solid line — Binary Search Tree

While this seems like an amazing feature of binary search trees, consider the insertion of the

values: 1, 2, 3, 4, 5 in that order. The fact is a tree like this would form:

Figure 2.1.3: An unbalanced binary data tree

As seen, this structure looks similar to a regular list. In fact, for worst-case scenario, the
efficiency would be 0(5), as like a linear search. This would not be considered a binary search

tree.

In order to solve the problem, trees will have balancing algorithms implemented in order to
maintain the structure they need (reducing the number of searches required for a value).
Different implementations of the same structure can be given, where both have the same
behavior but a different method in ensuring this behavior. This will mean that some
implementations are bound to be better than others in certain ways. Taking the balancing
algorithm into account, both AVL Treesand Red-Black Trees have different definitions of how

they go about balancing themselves. These will be explored in detail below.

The AVL Tree and Red-Black Tree algorithms used in the sections below were retrieved from
online. | have requested and received permission from the creator of the algorithms: Dr. Mark

Allen Weiss. The permission letter and reply can be found in Appendix D (page 44).

2.2 Adelson-Velskii and Landis Tree

An Adelson-Velskii and Landis (AVL) Tree makes use of a height-balance property, which
states that, for each node, the height difference of the children of that node differ by 1 at most*.
This means if any height difference is more than 1, the tree is considered to be unbalanced. The
term height difference refersto the difference in height between the child nodes on the left side

of a node and the right side, where a height refers to the number of nodes in the longest path

*Goodrich, M. T., Tamassia, R. & Goldwasser, M. H., 2014. "11.3 AVL Trees" pg. 490, Data
Structures and Algorithms in Java. Sixth Edition ed.s.l.:Wiley.

from a node down to a leaf (inclusive). Note that the term leaf is used to denote a node with no
children. Each side of a node will have a height, which means the height difference will be the
absolute value of the left height minus the right height (or vice versa). Some implementations
will give one side negative unit values for height and sum the values of the left and right heights
to obtain the difference. For an AVL Tree to be balanced, all nodes must have a height

difference of 0 or 1.

Now the AVL Tree algorithm will be looked into more closely. Please refer to the Java code

in Appendix Al (page 33) and Appendix A2 (page 37) for the AVL Tree algorithm being

examined.

The insert() function from AvlTree.java is shown below:

1. | private AvlNode insert(Comparable x, AvlNode t) {
02. if (t == null)

e3. t = new AvlNode(x, null, null);

e4. else if (x.compareTo(t.element) < @) {

e5. t.left = insert(x, t.left);

26. if (height(t.left) - height(t.right) == 2)
e7. if (x.compareTo(t.left.element) < @)
e8. t = rotateWithLeftChild(t);

09. else

1. t = doubleWithLeftChild(t);

11. } else if (x.compareTo(t.element) > @) {

12. t.right = insert(x, t.right);

13. if (height(t.right) - height(t.left) == 2)
14. if (x.compareTo(t.right.element) > @)
15. t = rotateWithRightChild(t);

16. else

17. t = doubleWithRightChild(t);

18. } else

19. ; // Duplicate; do nothing

20. t.height = max(height(t.left), height(t.right)) + 1;
21. return t;

22. | }

Figure 2.2.1: AviTree insert() function®

> Weiss, M. A., n.d. AviTree.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AviTree.java
[Accessed January 2017].

Referring to Figure 2.2.1, the insert() function takes a recursive approach to inserting values
into the tree. The parameter x refers to the value to be inserted and the parameter t refers to the

current node, starting with the root node.

How the insert() function restructures the tree after insertion depends on the height property of
the nodes. Balancing is required when the condition on line 6 or line 13 is true. That is, when
the height difference of the node t is equal to 2. When this condition is satisfied, two possible
methods of restructuring are possible depending on the condition on line 7 or line 14. Note that

restructuring, if required, will occur after the value is actually inserted on line 5 or line 12.

For the situation where a node is inserted to the left or right child of the node t and the height

different of t is 2 (line 6 or line 13 from Figure 2.2.1 is true):

Note: for all AVL tree diagrams below, the number at the top-right of a node is the height

difference of that node.

1. If the value is being inserted to the left of t (line 4 from Figure 2.2.1 is true) and X is
less than the value of the left child of t (line 7 from Figure 2.2.1 is true) the function
rotateWithLeftChild() will be executed and t will be set to the function's return value.

The Java code for this function is shown below.

e1. private static AvlNode rotateWithLeftChild(Av1Node k2) {

02, AviNode k1 = k2.left;

e3. k2.left = kl.right;

e4. kl.right = k2;

e5. k2.height = max(height(k2.left), height(k2.right)) + 1;
06. ki.height = max(height(kl.left), k2.height) + 1;

e7. return ki;

es. | }

Figure 2.2.2: AvlTree rotateWithLeftChild() function®

® Weiss, M. A., n.d. AviTree.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AviTree.java
[Accessed January 2017].

This will rotate the subtree of root t such that the new root is t's left child and the original
node t is this root's right child. A diagram illustrating this is shown below (where A is

inserted into a tree which has values C and B):

k2 ki

Figure 2.2.3: k2 and k1 after line 2 from Figure 2.2.2 is executed

© @

k2 kl

Figure 2.2.4: k2 and k1 after line 3 and line 4 from Figure 2.2.2 are executed

O @'

k2 ki

Figure 2.2.5: k2 and k1 after line 5 and line 6 from Figure 2.2.2 are executed

So the tree k2 from Figure 2.2.5 is returned.

10

2. If the value is being inserted to the right of t (line 11 from Figure 2.2.1is true) and X is
greater than the value of the right child of t (line 14 from Figure 2.2.1 is true), the
function rotateWithRightChild() will be executed and t will be set to the function's

return value. The Java code for this function is shown below.

91. @ private static AvlNode rotateWithRightChild(AvlNode k1) {

2. AvlNode k2 = kl.right;

3. kl.right = k2.left;

04. k2.left = ki1;

e5. ki.height = max(height(kl.left), height(kl.right)) + 1;
06. k2.height = max(height(k2.right), kl.height) + 1;

7. return k2;

e8. | }

Figure 2.2.6: AvlTree rotateWithRightChild() function’

This will rotate the subtree of root t such that the new root is t's right child and the
original node tisthis root's left child. A diagram illustrating this is shown below (where

C is inserted into a tree which has values A and B):

kl k2

Figure 2.2.7: k1 and k2 after line 2 from Figure 2.2.6 is executed

” Weiss, M. A., n.d. AviTree.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AviTree.java
[Accessed January 2017].

11

ki k2

Figure 2.2.8: k1 and k2 after line 3 and line 4 from Figure 2.2.6 are executed

ki k2

Figure 2.2.9: k1 and k2 after line 5 and line 6 from Figure 2.2.6 are executed

So the tree k2 from Figure 2.2.9 is returned.

3. If the value is being inserted to the left of t (line 4 from Figure 2.2.1 is true) and X is
greater than the value of the left child of t (line 7 from Figure 2.2.1 is false) the function
doubleWithLeftChild() will be executed and t will be set to the function's return value.

The Java code for this function is shown below.

1. | private static AvlNode doubleWithLeftChild(AvlNode k3) {
02. k3.left = rotateWithRightChild(k3.left);

e3. return rotateWithLeftChild(k3);

e4. | }

Figure 2.2.10: AviTree doubleWithLeftChild() function®

& Weiss, M. A., n.d. AviTree.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AviTree.java
[Accessed January 2017].

12

This will rotate the subtree of root t's left child by the left child's right child and then
rotate t by its left child. A diagram illustrating this is shown below (where B is inserted

into a tree which has values C and A):

k3

Figure 2.2.11: initial value of k3 from Figure 2.2.10

Figure 2.2.12: k3 after line 2 from Figure 2.2.10 is executed

13

Figure 2.2.13: k3 after line 3 from Figure 2.2.10 is executed

So the value of k3 from Figure 2.2.13 is returned.

4. If the value is being inserted to the right of t (line 11 from Figure 2.2.1istrue) and X is
less than the value of the right child of t (line 14 from Figure 2.2.1 is false), the function
doubleWithRightChild() will be executed and t will be set to the function's return value.

The Java code for this function is shown below.

@1. @ private static AvlNode doubleWithRightChild(AvlNode k1) {
2. kl.right = rotateWithLeftChild(kl.right);

e3. return rotateWithRightChild(k1);

e4. | }

Figure 2.2.14: AviTree doubleWithRightChild() function®

This will rotate the subtree of root t's right child by the right child's left child and then
rotate t by its right child. A diagram illustrating this is shown below (where B is inserted

into a tree which has values A and C):

 Weiss, M. A., n.d. AviTree.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AviTree.java
[Accessed January 2017].

14

ki

Figure 2.2.15: initial value of k1 from Figure 2.2.14

O
O,

Figure 2.2.16: k1 after line 2 from Figure 2.2.14 is executed

ki

0

0 0

ORO

ki

Figure 2.2.17: k1 after line 3 from Figure 2.2.14 is executed

So the value of k1 from Figure 2.2.7 is returned.

2.3 Red-Black Tree

A Red-Black Tree makes use of a number of rules which must be followed to maintain balance
of its nodes. Each node can be colored red or black (as the name suggests) and the rules which
must be followed relate to the coloring of nodes. Note that each inserted node isred by default.

The red-black rules are listed below:

1. The root node is always black. If any restructuring occurs such that the root node is
changed, it isimportant to ensure that the new root node is colored black.

2. The children of a red node must be black. For a value inserted as a child of a red
node, it must be colored black. In all other cases, an inserted node is colored red.

3. All paths from the root to a leaf of the tree have the same black depth. This means

that there must be the same number of black nodes for each and every path.*

Re-balancing of nodes will occur if one of the rules is broken. For example, if a node is inserted
asa child of a red node (which itself is inserted as a red node), restructuring will need to occur

since the 2" rule is violated.

When a node, X, is inserted and restructuring is required (a rule is violated), there are two
possible situations which can occur and each situation will have a different approach to re-
balancing the area of the tree which requires it. Let P be the parent of X, let S be the sibling of

the parent and let G be the grandparent of X.

1. If Sis black or null, then restructuring followed by re-coloring occurs:

19 Goodrich, M. T., Tamassia, R. & Goldwasser, M. H., 2014. Data Structures and Algorithms
in Java. Sixth Edition ed.s.l.:Wiley.

16

AL

O
Ao
AL

Figure 2.3.1 (a): Red-Black Tree with X inserted

X is inserted as a red node and the red

child rule is violated.

/\

/A

Figure 2.3.1 (c): Red-Black Tree re-colored

Finally, re-coloring occurs so that the tree

can follow the rules set.

Another example is shown below:

Figure 2.3.1 (b): Red-Black Tree restructured

From X, P and G put in order from lowest
to highest, the middle value, P, is selected
to be the new root node of the subtree and
becomes a parent of the other two values:
Xand G. G will inherit P's left subtree:
subtree 1 as its left child.

17

/\

AL

RO
s LY

Figure 2.3.2 (a): Red-Black Tree with X inserted

X is inserted as a red node and the red

child rule is violated.

/A

Figure 2.3.2 (c): Red-Black Tree re-colored

Finally, re-coloringoccurs so that the tree

can follow the rules set.

Figure 2.3.2 (b): Red-Black restructured

From X, P and G put in order from lowest
to highest, the middle value, X, is selected
to be the new root node of the subtree and
becomes a parent of the other two values:
Pand G.

2. If Siis red, then there is only need for re-coloring to ensure the tree follows the rules.

18

Qﬁ} ol
®/) AN ®/) AA

Figure 2.3.3 (a): Red-Black Tree with X inserted Figure 2.3.3 (b): Red-Black Tree re-colored

X'is inserted as a red node and the red Since S isred, re-coloring is done on P, G
child rule is violated. and S to ensure the tree follows the rules.

The only exception for this situation is if G is the root node of the tree. If this is the case, it

must be colored black in order to follow the black root rule.

After successive insertions, the tree is gradually re-balanced. Seeing the Red-Black Tree
algorithm, it may be apparent that the AVL Tree algorithm takes more care in re-balancing

itself. This may be the case. This point will be discussed further in section 3 of the essay.

Now the Red-Black Tree algorithm will be looked into more closely. Please refer to the Java
code in Appendix A3 (page 38) and Appendix A4 (page 42) for the Red-Black Tree algorithm

being examined.

The next part will not be looked into in as much detail as the AVL Tree algorithm was. This is
because the Red-Black Tree algorithm has been described in theory in a good amount of detail
above. Additionally, the implementation below does not handle the restructuring in exactly the
same way as described above. However, the same result will be obtained and with the same

processes as above (such as rotations and re-colorings).

19

Firstly, itis important to know that there are variables defined for the RedBlackTree Java class
which are used in the insertion operation. These will not be explained in much detail as they
are only either constants or temporary variables used to aid the insertion process as well as

some other processes which will not be looked into.

el. private RedBlackNode header;
ez2. private static RedBlackNode nullNode;

03.

e4. static {// Static initializer for nullNode

@5. nullNode = new RedBlackNode(null);

06. nullNode.left = nullNode.right = nullNode;
e7. }

e8.

09. | static final int BLACK = 1; // Black must be 1
10. static final int RED = ©;

11.

12. // Used in insert routine and its helpers

L8, private static RedBlackNode current;
14. private static RedBlackNode parent;
15, private static RedBlackNode grand;
HIEE private static RedBlackNode great;

Figure 2.3.4: RedBlackTree constants and temporary variables function!

The only important thing to note here is the header variable, which points to the root of the
tree, must be set to the lowest possible comparable value when the RedBlackTree class is
instantiated (for example, if 32-bit integers are to be inserted into the tree, the predefined

constant: Integer.MIN_VALUE (which is approximately -2.15 billion) should be used).

The insert() function is shown below:

1 Weiss, M. A., n.d. RedBlackTree.java. [Online]

Available at:
https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java
[Accessed January 2017].

20

e1. public void insert(Comparable item) {

ez. current = parent = grand = header;

e3. nullNode.element = item;

ed.

es5. while (current.element.compareTo(item) != @) {

96. great = grand;

e7. grand = parent;

es. parent = current;

09. current = item.compareTo(current.element) < @ ?
10. current.left : current.right;

11.

12. // Check if two red children; fix if so

13. if (current.left.color == RED && current.right.color == RED)
14. handleReorient(item);

15. }

16.

7o // Insertion fails if already present

18. if (current != nullNode)

=g return;

20. current = new RedBlackNode(item, nullNode, nullNode);
21.

22, // Attach to parent

23. if (item.compareTo(parent.element) < @)

24. parent.left = current;

25. else

26. parent.right = current;

27. handleReorient(item);

28. | }

Figure 2.3.5: RedBlackTree insert() function?

For this implementation, the function uses a loop (lines5-15 from Figure 2.3.5) to determine

where in the tree to insert the node. The important restructuring part, however, is in the

handleReorient() function, which is called both in the loop when the current node's children

are red and at the end of the insert() function. The function is shown below:

12 Weiss, M. A., n.d. RedBlackTree.java. [Online]
Available at:

https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java

[Accessed January 2017].

21

81. @ private void handleReorient(Comparable item) {

02. // Do the color flip

3. current.color = RED;

e4. current.left.color = BLACK;

05. current.right.color = BLACK;

06.

e7. if (parent.color == RED){ // Have to rotate

8. grand.color = RED;

09. if ((item.compareTo(grand.element) < @) !=
10. (item.compareTo(parent.element) < 8))
1l parent = rotate(item, grand); // Start dbl rotate
12. current = rotate(item, great);

13. current.color = BLACK;

14.

15. header.right.color = BLACK; // Make root black
16. | }

Figure 2.3.6: RedBlackTree handleReorient() function:s

The handleReorient() function will handle both re-coloring and rotations for nodes to maintain
balance. To explain the program in Figure 2.3.6, lines 3-5 will handle the re-coloring for the
current node and its children. As seen with the explained theory above, there will be a color
change for the grandparent if the parent is red (red-child rule violation). Then, depending on
the comparable properties of the item being inserted and the current node's parent and
grandparent (lines 9-10), there will be a rotation by the parent and the grandparent, the value
of which is returned and set to the parent node. Then, the current node will be set to the return
value of a rotation by the great grandparent. Although great grandparent wasn't mentioned
when the theory was described in detail, it is used in the implementation in order for a rotated
subtree with a grandfather root to be set as a child of the great grandfather (please refer to
Appendix A3 for further information about how this works). Finally, the header color is set to

black to satisfy the black root rule.

The rotate() function consists of code for a standard Red-Black rotation. This will not be

explained in detail. More information about this can be found in Appendix A3.

13 Weiss, M. A., n.d. RedBlackTree.java. [Online]

Available at:
https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java
[Accessed January 2017].

22

3. Hypothesis and Applied Theory

The theory of both tree algorithms have been described and explained in a good amount of
detail. Now it is important to consider which of the two algorithms is most efficient. Time
complexity was brought up at the beginning of this essay but not applied when the two
algorithms were explored. An experiment will be carried out to measure the time taken for each
tree to add sets of values. It should be said that both trees have an efficiency of O(log, N) for
insertion**, However, this efficiency is for the physical insertion of the values and doesn't take
into account the re-balancing required after it. This experiment will take into account the re-

balancing required after insertions as time is physically being measured.

It was mentioned earlier that the AVL tree may take more care in ensuring that it is balanced.
This is due to the AVL Tree algorithm checking the height difference of all traversed nodes
after each insertion and re-balancing itself if any height difference is 2. The RedBlack Tree
algorithm, however, re-balances and/or recolors nodes based on violated rules. Hence, the

RedBlack Tree algorithm will do less physical restructuring than the AVL Tree algorithm.

The experiment will measure the relationship between time, y, and size of sets being inserted,
X. By varying the size of the sets of values inserted into the tree, a clear relationship between
these two variables should be determined and how this relationship differs between the AVL

tree and the Red-Black tree should be seen.

| hypothesize that there will be a logarithmic relationship between x and y as described above.

I also believe that the Red-Black tree will insert values and re-balance itself in a lower time

14 Rowell, E., n.d. Know Thy Complexities. [Online]
Available at: http://bigocheatsheet.com/
[Accessed April 2017].

23

than the AVL tree for all sets of data. Since the efficiencies of the whole of both insertion
processes are being measured, there will only be need to measure the time it takes for a number

of values to be inserted into atree using the insert() functions of both tree classes.

4. Methodology

The experimental procedure was briefly described and explained above. The specific procedure,

with reference to the Java code being run, will be explained in this section.

4.1 Independent variables

The independent variables in this procedure refer to what will be changed in the experiment. |
will be changing the size of the sets of data. Each set of data will be successive integers from
1to N, where N is increased in increments of 100, starting from 100 and ending at 1000 (so
there will be a total of 10 sets of data). My decision of incrementing N by 100 is to ensure that
there aren't too many points when the graphs are plotted, but so that enough data is inserted to
illustrate the trees' natures and to plot a suitable graph in which a clear enough relationship can
be seen. My decision for the data to be in ascending order is to maximize the amount of time

it takes for both trees to balance the data.

4.2 Dependent variable

The only dependent variable being measured in this experiment is the time it takes for each
set of data to be inserted into both trees. Thiswill be measured using difference of the System
Nanotimes before and after insertion and will give a time in nanoseconds. This is the most

precise measure of time possible by the system being used.

24

4.3 Controlled variables

Variable

Description

Specifications
(if applicable)

Computer and
operating system
used

I will be running the program
on my laptop: a MacBook Pro

Version: 10.10.5
Processor: 2.6 GHz Intel Core i5
Memory: 8GB 1600 MHz DDR3

Integrated
Development
Environment
(IDE) used

I will be running the program
using a single IDE

IDE: IntelliJ IDEA Ultimate
2017.2.1

Build: #1U-172.3544.35

Java Runtime Environment:
1.8.0_152-release-915-b6 x86_64
Java Virtual Machine: OpenJDK
64-Bit Server VM

Same algorithm
used

The algorithm from Appendix
A will be used in this
experiment.

Same functions
called

The same functions will be
called in the programs for
every set being tested.

Same data type
used

The experiment will be only
using the int (32-bitinteger)
data type for all sets being
tested.

4.4 Procedure

The procedure for the experiment is as follows:

1. Set up the program to insert all sets of values into both AVL and Red-Black Tree

algorithms and time each insertion. Output the time in nanoseconds for each of the trees

into a text file (please refer to Appendix B (page 43) for the program used to test the

sets).

2. Run the program to have it output the times of all insertions of the sets.

3. Take averages of the times for each set on each tree.

25

5. Data processing and graph

5.1 Data collection and processing
Below shows the average times for all sets which have been tested. For raw, un-averaged results,

please refer to Appendix C (page 43).

Average Time (nanoseconds)
Set Size AVL Tree Red-Black Tree

100 535878 409542

200 832316 524580

300 1097632 841614

400 1094302 1186661
500 1278388 1761996
600 1368342 1956118
700 1710333 2252886
800 1755713 2517534
900 1830463 2590616
1000 2587892 2629516

Figure 5.1.1: Average insertion times of sets tested for both trees

5.2 Graph of time against set size

Below shows a graph of time against set size for the sets of values inserted into both trees.

26

Insertion time (nanoseconds)

Key: Blue = AVL Tree, Red = Red-Black Tree

4000000 |

3000000 -

2000000

1000000

T T T T T
200 400 600 800 1000
Number of values in set

Figure 5.2.1: Graph of insertion time (y) against number of values in set (x) of the AVL and Red-
Black trees

6. Results discussion

My hypothesis of the logarithmic relationship has been shown to be correctas seenin the graph.
However, my other hypothesis of the red-black tree having a better efficiency in terms of time
complexity was shown to not be true for all set values. Referring to the graph in Figure 5.2.1,
there is a point of intersection between the two graphs at the coordinates: (954000, 240),
approximately. This shows that set of size 240 or below will be inserted into the Red-Black
tree at a lower time than the AVL tree, but when the setsize is over 240, itwill be inserted into
the AVL tree at a lower time than the Red-Black tree. Upon seeing this, | was astounded and

wondered why this was the case.

27

I initially thought that perhaps that it was due to the problem with the Red-Black tree addressed
previously, in which less checks made as values are inserted would mean that the Red-Black
tree would gradually tend to become unbalanced. This would then increase insertion time as

more nodes were added.

Another possibility which | considered was an issue with the algorithm implementation | used.
As more data is inserted into the Red-Black tree, there must be more variablesto set multiple
times (as a loop is used). Since the Red-Black implementation relied on these variables to
handle insertions, it may have just been the time taken for these variables to be set which
affected the overall insertion time after a certain number of insertions. Additionally, the AVL
implementation made use of recursion (unlike the Red-Black implementation). This could have
potentially affected the time taken for the AVL Tree to be lower than the Red-Black tree after

a certain number of values are inserted.

| have looked into the maximum heights of an AVL Tree and a Red-Black Tree with N values
and have found out that the maximum height from the root to the deepest leaf is approximately
1.44 log, (N + 2) for an AVL Tree™and approximately 2 log,(N + 1) for a Red-Black

Tree'®, Plotting these values on a graph with x-axis being N gives:

15 Alexander, E., n.d. AVL Trees. [Online]

Available at: http://pages.cs.wisc.edu/~ealexand/cs367/NOTES/AVL-Trees/index.html
[Accessed January 2017].

16 Narahari, Y., n.d. Height of a Red-Black Tree. [Online]

Available at: http://lcm.csa.iisc.ernet.in/dsa/node115.html

[Accessed August 2017].

28

20

10
/
/
ﬁ 10 20 30 40 50 60

4w

Figure 6.1.1: Graphs of 2 logx(x+1) and 1.44 logx(x+2)

1.44 log,(N + 2) [AVL Tree] = Blue Graph
2 log,(N + 1) [Red-Black Tree] = Red Graph

As can be seen, the shape of the graphs in Figure 6.1.1 matches those of the graphs in Figure

5.2.1, which were obtained from the experiment.

7. Conclusion

This experiment aimed to use the theory behind AVL and Red-Black trees explained in section
2 of the essay and practicallyapply it to see the relationship between insertion time and number
of values inserted into the AVL and Red-Black trees. As expected, there is a logarithmic
relationship between time and number of values inserted which is apparent in the graph in
Figure 5.2.1. To take it further, the investigation also aimed to use the theory behind the two

trees to see how the time-set size relationship differed for each algorithm.

29

Ordered sets were used to ensure that every insertion would cause required restructuring. Due
to this, the Red-Black Tree would increase in height more than the AVL Tree would since the
Red-Black Tree would have a larger height on the right side of the root node. Since the AVL
Tree takes better care when balancing itself (rotation for every ordered insertion), however, the
AVL Tree does not run into this problem. Hence, | am concluding: for ordered sets, the Red-
Black Tree is more insertion-efficient than the AVL Tree for values < 240. However, the

AVL Tree is more insertion-efficient than the Red-Black Tree for values > 240.

To answer the research question of this essay, my answer would be that the re-balancing
algorithm efficiency of both the AVL Tree and the Red-Black tree in terms of time complexity
would depend on the number of values inserted as well as how the values are inserted. As seen
with the graph of results, the Red-Black Tree is more efficient than the AVL Tree is for a few
ordered values. However, with larger ordered values, the AVL Tree proves to be more efficient
than the Red-Black tree and as values are increased even further beyond 1000, the AVL Tree,

in the long run, proves to be more insertion-efficient than that of the Red-Black Tree.

30

Bibliography

Adamchik, V. S., 2009. Algorithmic Complexity. [Online]
Available at: https://www.cs.cmu.edu/~adamchik/15-
121/lectures/Algorithmic%20Complexity/complexity.html
[Accessed June 2017].

Alexander, E.,n.d. AVL Trees. [Online]
Available at: http://pages.cs.wisc.edu/~ealexand/cs367/NOTES/AVL-Trees/index.html
[Accessed 23 August 2017].

Dictionary.com Unabridged, n.d. Binary. [Online]
Available at: http://www.dictionary.com/browse/binary
[Accessed May 2017].

Goodrich, M. T., Tamassia, R. & Goldwasser, M. H., 2014. Data Structures and Algorithms in
Java. Sixth Edition ed. s.l.:Wiley.

Massachusetts Institute of Technology, 2003. Big O Notation. [Online]
Available at: http://web.mit.edu/16.070/www/lecture/big_o.pdf
[Accessed June 2017].

Narahari, Y., n.d. Height of a Red-Black Tree. [Online]
Available at: http://lcm.csa.iisc.ernet.in/dsa/node115.html
[Accessed August 2017].

Paton, J., n.d. Red-Black Trees. [Online]
Available at: http://pages.cs.wisc.edu/~paton/readings/Red-Black-Trees
[Accessed January 2017].

Rowell, E., n.d. Know Thy Complexities. [Online]
Available at: http://bigocheatsheet.com/
[Accessed April 2017].

Weiss, M. A., n.d. AvINode.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AviINode.java
[Accessed January 2017].

Weiss, M. A., n.d. AviTree.java. [Online]
Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AviTree.java
[Accessed January 2017].

Weiss, M. A., n.d. RedBlackNode.java. [Online]

Available at:
https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackNode.java
[Accessed January 2017].

31

Weiss, M. A, n.d. RedBlackTree.java. [Online]
Available at:

https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java

[Accessed January 2017].

32

Appendices

Appendix A: Tree/TreeNode Libraries

Al: AvlTree.java (Weiss, n.d.)

// BinarySearchTree class

1l

/I CONSTRUCTION: with no initializer

I

// ******************PUBLIC OPERATIONS*********************
// void insert(x) --> Insert x

// void remove(x) -->Remove x (unimplemented)

/I Comparable find(x) -->Return item that matches x

/I Comparable findMin() --> Return smallest item

// Comparable findMax() -->Return largest item

// boolean isEmpty() -->Return true if empty; else false

// void makeEmpty() -->Remove all items
// void printTree() --> Print tree in sorted order
/**

* Implements an AVL tree.
* Note that all "matching" is based on the compareTo method.
* @author Mark Allen Weiss
*/
public class AvITree {

/**

* Construct the tree.

*/

public AviTree() {

root = null;

}

/**

* Insert into the tree; duplicates are ignored.

*

* @param x the item to insert.

*/

public void insert(Comparable x) {
root = insert(x, root);

}

/**

* Remove from the tree. Nothing is done if x is not found.
* @param x the item to remove.

*/

public void remove(Comparable x) {

System.out.printin("Sorry, remove unimplemented");

}

/**
* Find the smallest item in the tree.
* @return smallest item or null if empty.
*/
public Comparable findMin() {
return elementAt(findMin(root));

}

/**
* Find the largest item in the tree.
* @return the largest item of null if empty.
*/
public Comparable findMax() {
return elementAt(findMax(root));

}

/**
* Find an item in the tree.
* @param x the item to search for.
* @return the matching item or null if not found.
*/
public Comparable find(Comparable x) {
return elementAt(find(x, root));

}

/**
* Make the tree logically empty.
*/
public void makeEmpty() {
root = null;

}

/**
* Test if the tree is logically empty.

*

* @return true if empty, false otherwise.
*/
public boolean isEmpty() {

return root == null;

}

/**

* Print the tree contents in sorted order.
*/

public void printTree() {

34

if (isEmpty())

System.out.printin("Empty tree");
else

printTree(root);

}

/**

* Internal method to get element field.

* @param t the node.

* @return the element field or null if tis null.

*/

private Comparable elementAt(AvIiNode t) {
returnt == null ? null : t.element;

}

Jrx
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the tree.
* @return the new root.
*/
private AviNode insert(Comparable x, AvINode t) {
if (t==null)
t = new AvINode(x, null, null);
else if (x.compareTo(t.element) < 0) {
t.left = insert(x, t.left);
if (height(t.left) - height(t.right) == 2)
if (x.compareTo(t.left.element) < 0)
t = rotateWithLeftChild(t);
else
t = doubleWithLeftChild(t);
} else if (x.compareTo(t.element) > 0) {
t.right = insert(x, t.right);
if (height(t.right) - height(t.left) == 2)
if (x.compareTo(t.right.element) > 0)
t = rotateWithRightChild(t);
else
t = doubleWithRightChild(t);
} else
; /I Duplicate; do nothing
t.height = max(height(t.left), height(t.right)) + 1;
returnt;

}

/**
* Internal method to find the smallest item in a subtree.

*

* @param t the node that roots the tree.
* @return node containing the smallest item.

35

*/
private AvINode findMin(AvINode t) {
if (t==null)
returnt;

while (t.left = null)
t = t.left;
returnt;

}

/**
* Internal method to find the largest item in a subtree.

*

* @param t the node that roots the tree.
* @return node containing the largest item.
*/
private AvINode findMax(AvINode t) {
if (t == null)
returnt;

while (t.right!= null)
t = t.right;
return t;

}

/**
* Internal method to find an item in a subtree.
* @param x is item to searchfor.
* @param t the node that roots the tree.
* @return node containing the matched item.
*/
private AvINode find(Comparable x, AvINode t) {
while (t!= null)
if (x.compareTo(t.element) < 0)

t = t.left;
else if (x.compareTo(t.element) > 0)
t = t.right;

else
returnt; // Match

return null; // No match

}
/**

* Internal method to print a subtree in sorted order.

*

* @param t the node that roots the tree.
*/
private void printTree(AvINode t) {

if (t!=null) {

36

printTree(t.left);
System.out.printin(t.element);
printTree(t.right);

}
1
/**
* Return the height of node t, or -1, if null.
*/

private static int height(AvINode t) {
returnt==null ? -1: t.height;

}

/**

* Return maximum of |hs and rhs.

*/

private static int max(int lhs, int rhs) {
return lhs >rhs ? |hs : rhs;

}
/**

* Rotate binary tree node with left child.

* For AVL trees, this is a single rotation for case 1.

* Update heights, then return new root.

*/

private static AviNode rotateWithLeftChild(AvINode k2) {
AvINode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
k2.height = max(height(k2.left), height(k2.right)) + 1;
k1.height = max(height(k1.left), k2.height) + 1;
return k1;

}

[r*

* Rotate binary tree node with right child.

* For AVL trees, this is a single rotation for case 4.

* Update heights, then return new root.

*/

private static AviNode rotateWithRightChild(AvINode k1) {
AvINode k2 = k1.right;
k1.right = k2.left;
k2.left = k1;
k1.height = max(height(k1.left), height(k1.right)) + 1;
k2.height = max(height(k2.right), k1.height) + 1;
return k2;

}

/**
* Double rotate binary tree node: first left child
* with its right child; then node k3 with new left child.

37

* For AVL trees, this is a double rotation for case 2.

* Update heights, then return new root.

*/

private static AvINode doubleWithLeftChild(AvINode k3) {
k3.left = rotateWithRightChild(k 3.left);
return rotateWithLeftChild(k3);

}

/**

* Double rotate binary tree node: first right child

* with its left child; then node k1 with new right child.

* For AVL trees, this is a double rotation for case 3.

* Update heights, then return new root.

*/

private static AviINode doubleWithRightChild(AvINode k1) {
k1.right = rotateWithLeftChild(k1.right);
return rotateWithRightChild(k1);

}

/**

* The tree root.
*/
private AvINode root;

A2: AvINode.java (Weiss, n.d.)

/I Basic node stored in AVL trees
// Note that this class is not accessible outside
/I of package DataStructures

class AvINode {
/I Constructors
AvINode(Comparable theElement) {
this(theElement, null, null);

}

AvINode(Comparable theElement, AvINode It, AviNode rt) {
element = theElement;
left = It;
right = rt;
height = 0;
}

/l Friendly data; accessible by other package routines
Comparable element; // The data in the node
AvINode left; /I Left child

AvINode right; /I Right child

int height; // Height

38

A3: RedBlackTree.java (Weiss, n.d.)

// RedBlackTree class

I

/I CONSTRUCTION: with a negative infinity sentinel

1

// ******************PUBL'C OPERATIONS*********************
// void insert(x) -->Insert x

// void remove(x) -->Remove x (unimplemented)

/I Comparable find(x) -->Return item that matches x

/I Comparable findMin() --> Return smallest item

// Comparable findMax() --> Return largest item

// boolean isEmpty() -->Return true if empty; else false

/I void makeEmpty() -->Remove all items
/I void printTree() --> Print tree in sorted order
/**

* Implements a red-black tree.
* Note that all "matching" is based on the compareTo method.

*

* @author Mark Allen Weiss
*/
public class RedBlackTree {

/**
* Construct the tree.
* @param neglInf a value less than or equal to all others.
*/
public RedBlackTree(Comparable neginf) {
header = new RedBlackNode(neginf);
header.left = header.right = nullNode;

}
/**

* Insert into the tree. Does nothing if item already present.

*

* @param item the item to insert.

*/

public void insert(Comparable item) {
current = parent = grand = header;
nullNode.element = item;

while (current.element.compareTo(item) != 0) {
great = grand;
grand = parent;
parent = current;
current = item.compareTo(current.element) <0 ?
current.left : current.right;

/I Check if two red children; fix if so

39

}

/**
* Remove from the tree.

if (current.left.color == RED && current.right.color == RED)
handleReorient(item);

}

/I Insertion fails if already present
if (current != nuliNode)
return;
current = new RedBlackNode(item, nullNode, nullNode);

/I Attach to parent
if (item.compareTo(parent.element) < 0)
parent.left = current;
else
parent.right = current;
handleReorient(item);

* Not implemented in this version.

*

* @param x the item to remove.

*/

public void remove(Comparable x) {

}

/**

System.out.printin("Remove is not implemented");

* Find the smallest item the tree.

*

* @return the smallest item or null if empty.

*/

public Comparable findMin() {

}

/**

if (isEmpty())
return null;

RedBlackNode itr = header.right;

while (itr.left != nullNode)
itr = itr.left;

return itr.element;

* Find the largest item in the tree.

*

* @return the largest item or null if empty.

*/

public Comparable findMax() {

if (isEmpty())

40

return null;
RedBlackNode itr = header.right;

while (itr.right != nullNode)
itr = itr.right;

return itr.element;

}

/**

* Find an item in the tree.

* @param x the item to search for.

* @return the matching item or null if not found.

*/

public Comparable find(Comparable x) {
nuliNode.element = x;
current = header.right;

for (;5) {

if (x.compareTo(current.element) < 0)
current = current.left;

else if (x.compareTo(current.element) > 0)
current = current.right;

else if (current != nullNode)
return current.element;

else
return null;

!

/**

* Make the tree logically empty.

*/

public void makeEmpty() {
header.right = nullNode;

}

/**
* Test if the tree is logically empty.
* @return true if empty, false otherwise.
*/
public boolean isEmpty() {
return header.right == nullNode;

}

/**
* Print the tree contents in sorted order.
*/

41

public void printTree() {
if (isEmpty())
System.out.printin("Empty tree");
else
printTree(header.right);

}
/**

* Internal method to print a subtree in sorted order.

* @param t the node that roots the tree.

*/

private void printTree(RedBlackNode t) {

if (t!= nullNode) {

printTree(t.left);
System.out.printin(t.element);
printTree(t.right);

}
/**

* Internal routine that is called during an insertion
* if a node has two red children. Performs flip and rotations.
* @param item the item being inserted.
*/
private void handleReorient(Comparable item) {
/I Do the color flip
current.color = RED;
current.left.color = BLACK;
current.right.color = BLACK;

if (parent.color == RED) // Have to rotate

{
grand.color = RED;
if ((item.compareTo(grand.element) <0) !=
(item.compareTo(parent.element) < 0))
parent = rotate(item, grand); // Start dbl rotate
current = rotate(item, great);
current.color = BLACK;
}
header.right.color = BLACK; // Make root black
}
/**

* Internal routine that performs a single or double rotation.

* Because the result is attached to the parent, there are four cases.
* Called by handleReorient.

* @param item the item in handleReorient.

* @param parent the parent of the root of the rotated subtree.

42

* @return the root of the rotated subtree.
*/
private RedBlackNode rotate(Comparable item, RedBlackNode parent) {
if (item.compareTo(parent.element) < 0)
return parent.left = item.compareTo(parent.left.element) < 0 ?
rotateWithLeftChild(parent.left) : // LL
rotateWithRightChild(parent.left); // LR

else
return parent.right = item.compareTo(parent.right.element) <0 ?

rotateWithLeftChild(parent.right) : //RL
rotateWithRightChild(parent.right); // RR

}

[rx

* Rotate binary tree node with left child.

*/

static RedBlackNode rotateWithLeftChild(RedBlackNode k2) {
RedBlackNode k1 = k2.left;
k2.left = k1.right;

k1.right = k2;
return k1;
}
/**
* Rotate binary tree node with right child.
*/

static RedBlackNode rotateWithRightChild(RedBlackNode k1) {
RedBlackNode k2 = k1.right;
k1.right = k2.left;
k2.left =k1;
return k2;

}

private RedBlackNode header;
private static RedBlackNode nullNode;

static /I Static initializer for nullNode

{
nullNode = new RedBlackNode(null);
nullNode.left = nullNode.right = nullNode;

}

static final int BeLACK = 1; // Black must be 1
static final int RED = 0;

/l Used in insert routine and its helpers
private static RedBlackNode current;
private static RedBlackNode parent;
private static RedBlackNode grand;
private static RedBlackNode great;

43

A4: RedBlackNode.java (Weiss, n.d.)

// Basic node stored in red-black trees
/I Note that this class is not accessible outside
/1 of package DataStructures

class RedBlackNode {
// Constructors
RedBlackNode(Comparable theElement) {
this(theElement, null, null);

}

RedBlackNode(Comparable theElement, RedBlackNode It, RedBlackNode rt) {
element = theElement;
left = It;
right = rt;
color = RedBlackTree.BLACK;
}

/I Friendly data; accessible by other package routines
Comparable element; // The data in the node
RedBlackNode left; /I Left child

RedBlackNode right; //Right child

int color; // Color

Appendix B: Program used in the experiment

int set = 100; // Change and re-run program

for (int trial = 1; trial <= 10; trial++) {
AviTree avl = new AvITree();
RedBlackTree rb = new RedBlackTree(Double.MIN_VALUE);

long startAVL = System.nanoTime();

for (double i = 1; i <= set; i++)
avl.insert(i);

long endAVL = System.nanoTime();

long startRB = System.nanoTime();

for (double i = 1; i <= set; i++)
rb.insert(i);

long endRB = System.nanoTime();

System.out.printin("AVL Trial " + trial + ": " + (endAVL - startAVL));
System.out.printin("RB Trial " + trial + ": " + (endRB - startRB));

44

Appendix C: Raw data of times obtained

C1: Raw and average times for AVL Tree

Set Size 100 200 300 400 500 600 700 800 900 1000
Trial 1 2581280 | 5983053 | 6669072 | 4445067 | 7613113 | 5983508 | 6363343 | 11501305 | 6973136 | 11601223
Trial 2 488279 | 397182 | 1935790 | 2275095 | 504328 | 851024 | 1854499 | 1057391 | 910888 | 1867284
Trial 3 410746 | 232996 | 631174 | 772049 | 522816 | 724961 | 646244 | 1945648 | 1170284 | 1054020
Trial 4 272462 | 189196 | 275478 | 696903 | 1046400 | 434082 | 2021447 | 842967 1338265 | 1087820
Trial 5 085350 | 133719 | 229312 | 464093 | 441713 | 438329 | 1745406 | 259145 088840 | 2134978
Trial 6 135056 | 161752 | 199271 | 1048937 | 1008765 | 550976 | 1500212 | 152406 921561 | 6765564
Trial 7 203909 | 352340 | 238741 | 274836 |410040 | 1159039 | 736276 | 1085024 | 3434569 | 390173
Trial 8 68037 167254 | 190581 | 308889 | 410341 | 499898 | 507880 | 362423 481209 | 554644
Trial 9 109732 | 472998 | 374234 | 329820 | 410973 | 521406 | 1560302 | 150863 | 1771136 | 195349
Trial 10 103929 | 232673 | 232664 | 327328 | 415393 | 2520195 | 167725 | 199961 314738 | 227860
Average 535878 | 832316 | 1097632 | 1094302 | 1278388 | 1368342 | 1710333 | 1755713 | 1830463 | 2587892

C2: Raw and average times for Red-Black Tree

Set Size 100 200 300 400 500 600 700 800 900 1000
Trial 1 897100 | 1572146 | 4719353 | 3807996 | 4511711 | 4618547 | 3827439 | 5471420 | 7612243 | 4993088
Trial 2 398344 | 2047101 | 445611 | 4682227 | 415191 | 444595 | 565356 | 4396306 | 957851 | 1071088
Trial 3 1603153 | 419289 | 471936 | 779954 | 1291588 | 502841 | 458196 | 9157614 | 8801192 | 2338015
Trial 4 771489 | 161819 | 236261 | 365249 | 383348 | 513776 | 395184 | 631247 | 5122684 | 6833644
Trial 5 50030 136920 | 1074495 | 325017 | 669508 | 4761305 | 9042658 | 749707 | 851016 | 3701804
Trial 6 67463 196400 | 272305 | 352181 | 447824 | 6479630 | 2272656 | 1919854 | 1329396 | 949009
Trial 7 100926 | 175193 | 273745 | 405009 | 7965308 | 831211 | 1359304 | 967175 | 331589 | 950182
Trial 8 69530 163721 | 236786 | 361201 | 1165498 | 462080 | 730359 | 609491 | 300666 | 3204756
Trial 9 68191 170886 | 436382 | 351122 | 422865 | 429500 | 3276667 | 557460 | 290566 | 1265100
Trial 10 69194 202322 | 249268 | 436653 | 347118 | 517693 | 601042 | 715065 | 308959 | 988471
Average 409542 | 524580 | 841614 | 1186661 | 1761996 | 1956118 | 2252886 | 2517534 | 2590616 | 2629516

Appendix D: Permission letter from Dr. Mark Allen Weiss

45

D1: Permission email sent to Dr. Weiss

Dear Dr. Weiss,

My name is | | am a senior student of an international school in Southeast Asia, | ENENENENGTzNG. -nd |

am doing the IB Diploma Program. As part of the diploma program, | must write a 4000-word research paper on a topic of my
choice and | have decided to do my topic on comparing two binary search trees: AVL and Red-Black. After looking into
various resources online, | have found your source code for the AVL Tree and RedBlack Tree algorithms in Java:

AvlTree.java: http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/AviTree.java
AviNode.java: http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/AviNode.java
RedBlackTree.java: http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java
RedBlackNode.java: http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackNode.java

| was wondering if | would be allowed to use these resources for the experimental procedure (which involves timing the
insertions of sets of data into both trees) as well as discussing the algorithms in my paper, given that | cite them. Note that
this essay will not be sold or published online. The only people who will have access to it are myself, my supervisor and the
examiner who will mark it in the summer of 2018. My supervisor has also looked into ordering your book "Data Structures
and Algorithm Analysis in Java", as it would provide as a good resource for future students at the school who would also like
to write computer science research papers.

Please let me know if this is okay with you and thank you very much for taking time to read this.

Yours sincerely,

D2: Reply email from Dr. Weiss

ear [

That is fine... best of luck with your paper.
Regards,

Mark Weiss

46

