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1. Introduction 

 

This essay will focus on the structure of binary search trees, a relatively complex data structure 

which can be very useful in many applications. This essay will specifically look into the 

Adelson-Velskii and Landis (AVL) Tree and the Red-Black Tree, which are two types of binary 

search tree. Given a set of values inserted into both trees, the time complexity for the insertion 

operations for both trees will be investigated. Time complexity is the term used to refer to the 

amount of time taken for an algorithm to run given a set of input values of a certain size1. 

Hence, the question: How does the re-balancing efficiency of an Adelson-Velskii and Landis 

Tree compare to that of a Red-Black Tree in terms of time complexity upon insertion of values? 

This area links to Topic 5 of the IB Higher Level Computer Science course. 

2. Theory 

 

2.1 Binary Search Trees 
 

A binary search tree is a data structure with a defined behavior and is the basis of the two trees 

being looked into. The word binary refers to "being composed of two things"2. For trees, it 

means each item in a tree must point to a maximum of two other items (referred to as children). 

This means zero children or one child are also allowed. An item of a binary search tree is 

commonly referred to as a node. This term will be used for the remainder of the essay to 

describe values in trees. 

 

                                                 
1 Adamchik, V. S., 2009. Algorithmic Complexity. [Online]  

Available at: https://www.cs.cmu.edu/~adamchik/15-
121/lectures/Algorithmic%20Complexity/complexity.html 
[Accessed June 2017]. 
 
2 Dictionary.com Unabridged, n.d. Binary. [Online]  

Available at: http://www.dictionary.com/browse/binary 
[Accessed May 2017]. 
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A binary search tree must choose where to place a value when it is inserted. Each node in the 

tree can be compared in some way (for example, numbers by size and text lexicographically). 

Each node will have a left child pointer and a right child pointer, which points to another node 

in the tree. The left child of a node must have a value 'less than' the node, which means the 

right child must have a value 'greater than' the node.  

 

When inserting a node: 

 

1. If the tree is empty, the root of the tree (the top value or more commonly known as the 

root node) is set to this node. 

2. If a root node exists and its value is 'greater than' the value being inserted, the same 

process will occur with the root's left child. 

3. If a root node exists and its value is 'less than' the value being inserted, the same process 

will occur with the root's right child. 

4. This will occur until there is a position in the tree where a left child or right child doesn't 

exist for a node. This will be where the new node is placed. 

 

An example of a typical Binary Data Tree is shown in Figure 2.1.1 below. 
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Figure 2.1.1: Example of a Binary Data Tree 

 

The 'Search' in 'Binary Search Tree' comes from the main purpose of using the structure in the 

first place: searching it. Searching follows a similar process to insertion. 

 

By organizing nodes in this structure, searching for values can happen very efficiently 

compared to, say, a linear search. A notation used to measure the worst-case efficiency of an 

algorithm is the Big-O notation3. For an array, it is 𝑂(𝑁), where 𝑁 is the size of the array. For 

binary search trees, the searching efficiency is 𝑂(log2 𝑁) , which is a massive difference 

compared to 𝑂(𝑁) as shown in Figure 2.1.2 below. 

 

                                                 
3 Massachusetts Institute of Technology, 2003. Big O Notation. [Online]  

Available at: http://web.mit.edu/16.070/www/lecture/big_o.pdf 
[Accessed June 2017]. 
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Figure 2.1.2: A graph to show the worst-case number of searches for the two data structures (y-

axis) over the number of values stored (x-axis) 

Dashed line – Array 

Solid line – Binary Search Tree 

 

While this seems like an amazing feature of binary search trees, consider the insertion of the 

values: 1, 2, 3, 4, 5 in that order. The fact is a tree like this would form: 

 
Figure 2.1.3: An unbalanced binary data tree 
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As seen, this structure looks similar to a regular list. In fact, for worst-case scenario, the 

efficiency would be 𝑂(5), as like a linear search. This would not be considered a binary search 

tree. 

 

In order to solve the problem, trees will have balancing algorithms implemented in order to 

maintain the structure they need (reducing the number of searches required for a value).  

Different implementations of the same structure can be given, where both have the same 

behavior but a different method in ensuring this behavior. This will mean that some 

implementations are bound to be better than others in certain ways. Taking the balancing 

algorithm into account, both AVL Trees and Red-Black Trees have different definitions of how 

they go about balancing themselves. These will be explored in detail below.  

 

The AVL Tree and Red-Black Tree algorithms used in the sections below were retrieved from 

online. I have requested and received permission from the creator of the algorithms: Dr. Mark 

Allen Weiss. The permission letter and reply can be found in Appendix D (page 44). 

 

2.2 Adelson-Velskii and Landis Tree 
 

An Adelson-Velskii and Landis (AVL) Tree makes use of a height-balance property, which 

states that, for each node, the height difference of the children of that node differ by 1 at most4. 

This means if any height difference is more than 1, the tree is considered to be unbalanced. The 

term height difference refers to the difference in height between the child nodes on the left side 

of a node and the right side, where a height refers to the number of nodes in the longest path 

                                                 
4 Goodrich, M. T., Tamassia, R. & Goldwasser, M. H., 2014. "11.3 AVL Trees" pg. 490, Data 
Structures and Algorithms in Java. Sixth Edition  ed. s.l.:Wiley. 
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from a node down to a leaf (inclusive). Note that the term leaf is used to denote a node with no 

children. Each side of a node will have a height, which means the height difference will be the 

absolute value of the left height minus the right height (or vice versa). Some implementations 

will give one side negative unit values for height and sum the values of the left and right heights 

to obtain the difference. For an AVL Tree to be balanced, all nodes must have a height 

difference of 0 or 1.  

 

Now the AVL Tree algorithm will be looked into more closely. Please refer to the Java code 

in Appendix A1 (page 33) and Appendix A2 (page 37) for the AVL Tree algorithm being 

examined. 

 

The insert() function from AvlTree.java is shown below: 

 
Figure 2.2.1: AvlTree insert() function5 

 

                                                 
5 Weiss, M. A., n.d. AvlTree.java. [Online]  

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java 
[Accessed January 2017]. 
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Referring to Figure 2.2.1, the insert() function takes a recursive approach to inserting values 

into the tree. The parameter x refers to the value to be inserted and the parameter t refers to the 

current node, starting with the root node. 

 

How the insert() function restructures the tree after insertion depends on the height property of 

the nodes. Balancing is required when the condition on line 6 or line 13 is true. That is, when 

the height difference of the node t is equal to 2. When this condition is satisfied, two possible 

methods of restructuring are possible depending on the condition on line 7 or line 14. Note that 

restructuring, if required, will occur after the value is actually inserted on line 5 or line 12. 

 

For the situation where a node is inserted to the left or right child of the node t and the height 

different of t is 2 (line 6 or line 13 from Figure 2.2.1 is true): 

 

Note: for all AVL tree diagrams below, the number at the top-right of a node is the height 

difference of that node. 

 

1. If the value is being inserted to the left of t (line 4 from Figure 2.2.1 is true) and x is 

less than the value of the left child of t (line 7 from Figure 2.2.1 is true) the function 

rotateWithLeftChild() will be executed and t will be set to the function's return value. 

The Java code for this function is shown below. 

 
Figure 2.2.2: AvlTree rotateWithLeftChild() function6 

                                                 
6 Weiss, M. A., n.d. AvlTree.java. [Online]  

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java 
[Accessed January 2017]. 



  10 

This will rotate the subtree of root t such that the new root is t's left child and the original 

node t is this root's right child. A diagram illustrating this is shown below (where A is 

inserted into a tree which has values C and B): 

 

 
Figure 2.2.3: k2 and k1 after line 2 from Figure 2.2.2 is executed 

 

 
Figure 2.2.4: k2 and k1 after line 3 and line 4 from Figure 2.2.2 are executed 

 

 
Figure 2.2.5: k2 and k1 after line 5 and line 6 from Figure 2.2.2 are executed 

 

So the tree k2 from Figure 2.2.5 is returned. 
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2. If the value is being inserted to the right of t (line 11 from Figure 2.2.1 is true) and x is 

greater than the value of the right child of t (line 14 from Figure 2.2.1 is true), the 

function rotateWithRightChild() will be executed and t will be set to the function's 

return value. The Java code for this function is shown below. 

 

Figure 2.2.6: AvlTree rotateWithRightChild() function7 

 

This will rotate the subtree of root t such that the new root is t's right child and the 

original node t is this root's left child. A diagram illustrating this is shown below (where 

C is inserted into a tree which has values A and B): 

 

 
Figure 2.2.7: k1 and k2 after line 2 from Figure 2.2.6 is executed 

 

 

                                                 
7 Weiss, M. A., n.d. AvlTree.java. [Online]  

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java 
[Accessed January 2017]. 
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Figure 2.2.8: k1 and k2 after line 3 and line 4 from Figure 2.2.6 are executed 

 

  
Figure 2.2.9: k1 and k2 after line 5 and line 6 from Figure 2.2.6 are executed 

 

So the tree k2 from Figure 2.2.9 is returned. 

 

3. If the value is being inserted to the left of t (line 4 from Figure 2.2.1 is true) and x is 

greater than the value of the left child of t (line 7 from Figure 2.2.1 is false) the function 

doubleWithLeftChild() will be executed and t will be set to the function's return value. 

The Java code for this function is shown below. 

 

 
Figure 2.2.10: AvlTree doubleWithLeftChild() function8 

                                                 
8 Weiss, M. A., n.d. AvlTree.java. [Online]  

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java 
[Accessed January 2017]. 
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This will rotate the subtree of root t's left child by the left child's right child and then 

rotate t by its left child. A diagram illustrating this is shown below (where B is inserted 

into a tree which has values C and A): 

 

  
Figure 2.2.11: initial value of k3 from Figure 2.2.10 

 
Figure 2.2.12: k3 after line 2 from Figure 2.2.10 is executed 
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Figure 2.2.13: k3 after line 3 from Figure 2.2.10 is executed 

 So the value of k3 from Figure 2.2.13 is returned. 

 

4. If the value is being inserted to the right of t (line 11 from Figure 2.2.1 is true) and x is 

less than the value of the right child of t (line 14 from Figure 2.2.1 is false), the function 

doubleWithRightChild() will be executed and t will be set to the function's return value. 

The Java code for this function is shown below. 

 

  
Figure 2.2.14: AvlTree doubleWithRightChild() function9 

 

This will rotate the subtree of root t's right child by the right child's left child and then 

rotate t by its right child. A diagram illustrating this is shown below (where B is inserted 

into a tree which has values A and C): 

 

                                                 
9 Weiss, M. A., n.d. AvlTree.java. [Online]  

Available at: https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java 
[Accessed January 2017]. 
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Figure 2.2.15: initial value of k1 from Figure 2.2.14 

 

  
Figure 2.2.16: k1 after line 2 from Figure 2.2.14 is executed 

 

 
Figure 2.2.17: k1 after line 3 from Figure 2.2.14 is executed 

So the value of k1 from Figure 2.2.7 is returned. 
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2.3 Red-Black Tree 
 

A Red-Black Tree makes use of a number of rules which must be followed to maintain balance 

of its nodes. Each node can be colored red or black (as the name suggests) and the rules which 

must be followed relate to the coloring of nodes. Note that each inserted node is red by default. 

The red-black rules are listed below: 

 

1. The root node is always black. If any restructuring occurs such that the root node is 

changed, it is important to ensure that the new root node is colored black. 

2. The children of a red node must be black. For a value inserted as a child of a red 

node, it must be colored black. In all other cases, an inserted node is colored red. 

3. All paths from the root to a leaf of the tree have the same black depth. This means 

that there must be the same number of black nodes for each and every path.10 

 

Re-balancing of nodes will occur if one of the rules is broken. For example, if a node is inserted 

as a child of a red node (which itself is inserted as a red node), restructuring will need to occur 

since the 2nd rule is violated. 

 

When a node, X, is inserted and restructuring is required (a rule is violated), there are two 

possible situations which can occur and each situation will have a different approach to re-

balancing the area of the tree which requires it. Let P be the parent of X, let S be the sibling of 

the parent and let G be the grandparent of X. 

 

1. If S is black or null, then restructuring followed by re-coloring occurs: 

 

                                                 
10 Goodrich, M. T., Tamassia, R. & Goldwasser, M. H., 2014. Data Structures and Algorithms 

in Java. Sixth Edition ed. s.l.:Wiley. 
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Another example is shown below: 

 

X is inserted as a red node and the red  

child rule is violated. 

From X, P and G put in order from lowest 

to highest, the middle value, P, is selected 

to be the new root node of the subtree and 

becomes a parent of the other two values: 

X and G. G will inherit P's left subtree: 

subtree 1 as its left child. 

Finally, re-coloring occurs so that the tree 

can follow the rules set. 

Figure 2.3.1 (a): Red-Black Tree with X inserted 

 

Figure 2.3.1 (b): Red-Black Tree restructured 

 

Figure 2.3.1 (c): Red-Black Tree re-colored 
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2. If S is red, then there is only need for re-coloring to ensure the tree follows the rules. 

 

X is inserted as a red node and the red  

child rule is violated. 

From X, P and G put in order from lowest 

to highest, the middle value, X, is selected 

to be the new root node of the subtree and 

becomes a parent of the other two values: 

P and G. 

Finally, re-coloring occurs so that the tree 

can follow the rules set. 

Figure 2.3.2 (a): Red-Black Tree with X inserted 

 

Figure 2.3.2 (b): Red-Black restructured 

 

Figure 2.3.2 (c): Red-Black Tree re-colored 
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The only exception for this situation is if G is the root node of the tree. If this is the case, it 

must be colored black in order to follow the black root rule. 

 

After successive insertions, the tree is gradually re-balanced. Seeing the Red-Black Tree 

algorithm, it may be apparent that the AVL Tree algorithm takes more care in re-balancing 

itself. This may be the case. This point will be discussed further in section 3 of the essay. 

 

Now the Red-Black Tree algorithm will be looked into more closely. Please refer to the Java 

code in Appendix A3 (page 38) and Appendix A4 (page 42) for the Red-Black Tree algorithm 

being examined. 

 

The next part will not be looked into in as much detail as the AVL Tree algorithm was. This is 

because the Red-Black Tree algorithm has been described in theory in a good amount of detail 

above. Additionally, the implementation below does not handle the restructuring in exactly the 

same way as described above. However, the same result will be obtained and with the same 

processes as above (such as rotations and re-colorings). 

 

X is inserted as a red node and the red  

child rule is violated. 

Since S is red, re-coloring is done on P, G 

and S to ensure the tree follows the rules. 

Figure 2.3.3 (a): Red-Black Tree with X inserted 

 

Figure 2.3.3 (b): Red-Black Tree re-colored 
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Firstly, it is important to know that there are variables defined for the RedBlackTree Java class 

which are used in the insertion operation. These will not be explained in much detail as they 

are only either constants or temporary variables used to aid the insertion process as well as 

some other processes which will not be looked into. 

 

 
Figure 2.3.4: RedBlackTree constants and temporary variables function11 

 

The only important thing to note here is the header variable, which points to the root of the 

tree, must be set to the lowest possible comparable value when the RedBlackTree class is 

instantiated (for example, if 32-bit integers are to be inserted into the tree, the predefined 

constant: Integer.MIN_VALUE (which is approximately -2.15 billion) should be used). 

 

The insert() function is shown below: 

 

                                                 
11 Weiss, M. A., n.d. RedBlackTree.java. [Online]  
Available at: 

https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java 
[Accessed January 2017]. 
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Figure 2.3.5: RedBlackTree insert() function12 

 

For this implementation, the function uses a loop (lines 5-15 from Figure 2.3.5) to determine 

where in the tree to insert the node. The important restructuring part, however, is in the 

handleReorient() function, which is called both in the loop when the current node's children 

are red and at the end of the insert() function. The function is shown below: 

 

 

 

 

                                                 
12 Weiss, M. A., n.d. RedBlackTree.java. [Online]  
Available at: 

https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java 
[Accessed January 2017]. 
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Figure 2.3.6: RedBlackTree handleReorient() function13 

 

The handleReorient() function will handle both re-coloring and rotations for nodes to maintain 

balance. To explain the program in Figure 2.3.6, lines 3-5 will handle the re-coloring for the 

current node and its children. As seen with the explained theory above, there will be a color 

change for the grandparent if the parent is red (red-child rule violation). Then, depending on 

the comparable properties of the item being inserted and the current node's parent and 

grandparent (lines 9-10), there will be a rotation by the parent and the grandparent, the value 

of which is returned and set to the parent node. Then, the current node will be set to the return 

value of a rotation by the great grandparent. Although great grandparent wasn't mentioned 

when the theory was described in detail, it is used in the implementation in order for a rotated 

subtree with a grandfather root to be set as a child of the great grandfather (please refer to 

Appendix A3 for further information about how this works). Finally, the header color is set to 

black to satisfy the black root rule. 

 

The rotate() function consists of code for a standard Red-Black rotation. This will not be 

explained in detail. More information about this can be found in Appendix A3. 

                                                 
13 Weiss, M. A., n.d. RedBlackTree.java. [Online]  
Available at: 

https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/RedBlackTree.java 
[Accessed January 2017]. 
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3. Hypothesis and Applied Theory 

 

The theory of both tree algorithms have been described and explained in a good amount of 

detail. Now it is important to consider which of the two algorithms is most efficient.  Time 

complexity was brought up at the beginning of this essay but not applied when the two 

algorithms were explored. An experiment will be carried out to measure the time taken for each 

tree to add sets of values. It should be said that both trees have an efficiency of 𝑂(log2 𝑁) for 

insertion14. However, this efficiency is for the physical insertion of the values and doesn't take 

into account the re-balancing required after it. This experiment will take into account the re-

balancing required after insertions as time is physically being measured.  

 

It was mentioned earlier that the AVL tree may take more care in ensuring that it is balanced. 

This is due to the AVL Tree algorithm checking the height difference of all traversed nodes 

after each insertion and re-balancing itself if any height difference is 2. The RedBlack Tree 

algorithm, however, re-balances and/or recolors nodes based on violated rules. Hence, the 

RedBlack Tree algorithm will do less physical restructuring than the AVL Tree algorithm. 

 

The experiment will measure the relationship between time, y, and size of sets being inserted, 

x. By varying the size of the sets of values inserted into the tree, a clear relationship between 

these two variables should be determined and how this relationship differs between the AVL 

tree and the Red-Black tree should be seen. 

 

I hypothesize that there will be a logarithmic relationship between x and y as described above. 

I also believe that the Red-Black tree will insert values and re-balance itself in a lower time  

                                                 
14 Rowell, E., n.d. Know Thy Complexities. [Online]  

Available at: http://bigocheatsheet.com/ 
[Accessed April 2017]. 



  24 

than the AVL tree for all sets of data. Since the efficiencies of the whole of both insertion 

processes are being measured, there will only be need to measure the time it takes for a number 

of values to be inserted into a tree using the insert() functions of both tree classes. 

4. Methodology 

 

The experimental procedure was briefly described and explained above. The specific procedure, 

with reference to the Java code being run, will be explained in this section.  

 

4.1 Independent variables 
 

The independent variables in this procedure refer to what will be changed in the experiment. I 

will be changing the size of the sets of data. Each set of data will be successive integers from 

1 to N, where N is increased in increments of 100, starting from 100 and ending at 1000 (so 

there will be a total of 10 sets of data). My decision of incrementing N by 100 is to ensure that 

there aren't too many points when the graphs are plotted, but so that enough data is inserted to 

illustrate the trees' natures and to plot a suitable graph in which a clear enough relationship can 

be seen. My decision for the data to be in ascending order is to maximize the amount of time 

it takes for both trees to balance the data. 

 

4.2 Dependent variable 
 

The only dependent variable being measured in this experiment is the time it takes for each 

set of data to be inserted into both trees. This will be measured using difference of the System 

Nanotimes before and after insertion and will give a time in nanoseconds. This is the most 

precise measure of time possible by the system being used. 
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4.3 Controlled variables 
 

Variable Description 
Specifications  

(if applicable) 

Computer and 

operating system 

used 

I will be running the program 

on my laptop: a MacBook Pro 

Version: 10.10.5 

Processor: 2.6 GHz Intel Core i5 

Memory: 8GB 1600 MHz DDR3 

Integrated 

Development 

Environment 

(IDE) used 

I will be running the program 

using a single IDE 

IDE: IntelliJ IDEA Ultimate 

2017.2.1 

Build: #IU-172.3544.35 

Java Runtime Environment: 

1.8.0_152-release-915-b6 x86_64 

Java Virtual Machine: OpenJDK 

64-Bit Server VM 

Same algorithm 

used 

The algorithm from Appendix 

A will be used in this 

experiment. 

 

Same functions 

called 

The same functions will be 

called in the programs for 

every set being tested. 

 

Same data type 

used 

The experiment will be only 

using the int (32-bit integer) 

data type for all sets being 

tested. 

 

 

 

4.4 Procedure 

 

The procedure for the experiment is as follows: 

 

1. Set up the program to insert all sets of values into both AVL and Red-Black Tree 

algorithms and time each insertion. Output the time in nanoseconds for each of the trees 

into a text file (please refer to Appendix B (page 43) for the program used to test the 

sets). 

 

2. Run the program to have it output the times of all insertions of the sets.  

 

3. Take averages of the times for each set on each tree. 
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5. Data processing and graph 

 

5.1 Data collection and processing 
 

Below shows the average times for all sets which have been tested. For raw, un-averaged results, 

please refer to Appendix C (page 43). 

 

 

 Average Time (nanoseconds) 

Set Size AVL Tree Red-Black Tree 

100 535878 409542 

200 832316 524580 

300 1097632 841614 

400 1094302 1186661 

500 1278388 1761996 

600 1368342 1956118 

700 1710333 2252886 

800 1755713 2517534 

900 1830463 2590616 

1000 2587892 2629516 

Figure 5.1.1: Average insertion times of sets tested for both trees 

  

5.2 Graph of time against set size 
 

Below shows a graph of time against set size for the sets of values inserted into both trees.  
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Key: Blue = AVL Tree, Red = Red-Black Tree 

Figure 5.2.1: Graph of insertion time (y) against number of values in set (x) of the AVL and Red-

Black trees 

 

6. Results discussion 

 

My hypothesis of the logarithmic relationship has been shown to be correct as seen in the graph. 

However, my other hypothesis of the red-black tree having a better efficiency in terms of time 

complexity was shown to not be true for all set values. Referring to the graph in Figure 5.2.1, 

there is a point of intersection between the two graphs at the coordinates: (954000, 240), 

approximately. This shows that set of size 240 or below will be inserted into the Red-Black 

tree at a lower time than the AVL tree, but when the set size is over 240, it will be inserted into 

the AVL tree at a lower time than the Red-Black tree. Upon seeing this, I was astounded and 

wondered why this was the case. 
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I initially thought that perhaps that it was due to the problem with the Red-Black tree addressed 

previously, in which less checks made as values are inserted would mean that the Red-Black 

tree would gradually tend to become unbalanced. This would then increase insertion time as 

more nodes were added. 

 

Another possibility which I considered was an issue with the algorithm implementation I used. 

As more data is inserted into the Red-Black tree, there must be more variables to set multiple 

times (as a loop is used). Since the Red-Black implementation relied on these variables to 

handle insertions, it may have just been the time taken for these variables to be set which 

affected the overall insertion time after a certain number of insertions. Additionally, the AVL 

implementation made use of recursion (unlike the Red-Black implementation). This could have 

potentially affected the time taken for the AVL Tree to be lower than the Red-Black tree after 

a certain number of values are inserted. 

 

I have looked into the maximum heights of an AVL Tree and a Red-Black Tree with N values 

and have found out that the maximum height from the root to the deepest leaf is approximately 

𝟏. 𝟒𝟒 𝐥𝐨𝐠𝟐(𝑵 + 𝟐) for an AVL Tree15 and approximately 𝟐 𝐥𝐨𝐠𝟐(𝑵 + 𝟏) for a Red-Black 

Tree16. Plotting these values on a graph with x-axis being N gives: 

                                                 
15 Alexander, E., n.d. AVL Trees. [Online]  
Available at: http://pages.cs.wisc.edu/~ealexand/cs367/NOTES/AVL-Trees/index.html 

[Accessed January 2017]. 
16 Narahari, Y., n.d. Height of a Red-Black Tree. [Online]  

Available at: http://lcm.csa.iisc.ernet.in/dsa/node115.html 
[Accessed August 2017]. 
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Figure 6.1.1: Graphs of 2 log2(x+1) and 1.44 log2(x+2) 

1.44 log2(𝑁 + 2) [AVL Tree] = Blue Graph 

2 log2(𝑁 + 1) [Red-Black Tree] = Red Graph 

 

As can be seen, the shape of the graphs in Figure 6.1.1 matches those of the graphs in Figure 

5.2.1, which were obtained from the experiment. 

 

7. Conclusion 

 

This experiment aimed to use the theory behind AVL and Red-Black trees explained in section 

2 of the essay and practically apply it to see the relationship between insertion time and number 

of values inserted into the AVL and Red-Black trees. As expected, there is a logarithmic 

relationship between time and number of values inserted which is apparent in the graph in 

Figure 5.2.1. To take it further, the investigation also aimed to use the theory behind the two 

trees to see how the time-set size relationship differed for each algorithm. 
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Ordered sets were used to ensure that every insertion would cause required restructuring. Due 

to this, the Red-Black Tree would increase in height more than the AVL Tree would since the 

Red-Black Tree would have a larger height on the right side of the root node. Since the AVL 

Tree takes better care when balancing itself (rotation for every ordered insertion), however, the 

AVL Tree does not run into this problem. Hence, I am concluding: for ordered sets, the Red-

Black Tree is more insertion-efficient than the AVL Tree for values < 240. However, the 

AVL Tree is more insertion-efficient than the Red-Black Tree for values > 240. 

 

To answer the research question of this essay, my answer would be that the re-balancing 

algorithm efficiency of both the AVL Tree and the Red-Black tree in terms of time complexity 

would depend on the number of values inserted as well as how the values are inserted. As seen 

with the graph of results, the Red-Black Tree is more efficient than the AVL Tree is for a few  

ordered values. However, with larger ordered values, the AVL Tree proves to be more efficient 

than the Red-Black tree and as values are increased even further beyond 1000, the AVL Tree, 

in the long run, proves to be more insertion-efficient than that of the Red-Black Tree. 
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Appendices 

 

Appendix A: Tree/TreeNode Libraries 
 

A1: AvlTree.java (Weiss, n.d.) 

 
// BinarySearchTree class 
// 
// CONSTRUCTION: with no initializer 
// 
// ******************PUBLIC OPERATIONS********************* 
// void insert( x )       --> Insert x 
// void remove( x )       --> Remove x (unimplemented) 
// Comparable find( x )   --> Return item that matches x 
// Comparable findMin( )  --> Return smallest item 
// Comparable findMax( )  --> Return largest item 
// boolean isEmpty( )     --> Return true if empty; else false 
// void makeEmpty( )      --> Remove all items 
// void printTree( )      --> Print tree in sorted order 
 
/** 
 * Implements an AVL tree. 
 * Note that all "matching" is based on the compareTo method. 
 * 
 * @author Mark Allen Weiss 
 */ 
public class AvlTree { 
 /** 
  * Construct the tree. 
  */ 
 public AvlTree() { 
  root = null; 
 } 
 
 /** 
  * Insert into the tree; duplicates are ignored. 
  * 
  * @param x the item to insert. 
  */ 
 public void insert(Comparable x) { 
  root = insert(x, root); 
 } 
 
 /** 
  * Remove from the tree. Nothing is done if x is not found. 
  * 
  * @param x the item to remove. 
  */ 
 public void remove(Comparable x) { 
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  System.out.println("Sorry, remove unimplemented"); 
 } 
 
 /** 
  * Find the smallest item in the tree. 
  * 
  * @return smallest item or null if empty. 
  */ 
 public Comparable findMin() { 
  return elementAt(findMin(root)); 
 } 
 
 /** 
  * Find the largest item in the tree. 
  * 
  * @return the largest item of null if empty. 
  */ 
 public Comparable findMax() { 
  return elementAt(findMax(root)); 
 } 
 
 /** 
  * Find an item in the tree. 
  * 
  * @param x the item to search for. 
  * @return the matching item or null if not found. 
  */ 
 public Comparable find(Comparable x) { 
  return elementAt(find(x, root)); 
 } 
 
 /** 
  * Make the tree logically empty. 
  */ 
 public void makeEmpty() { 
  root = null; 
 } 
 
 /** 
  * Test if the tree is logically empty. 
  * 
  * @return true if empty, false otherwise. 
  */ 
 public boolean isEmpty() { 
  return root == null; 
 } 
 
 /** 
  * Print the tree contents in sorted order. 
  */ 
 public void printTree() { 
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  if (isEmpty()) 
   System.out.println("Empty tree"); 
  else 
   printTree(root); 
 } 
 
 /** 
  * Internal method to get element field. 
  * 
  * @param t the node. 
  * @return the element field or null if t is null. 
  */ 
 private Comparable elementAt(AvlNode t) { 
  return t == null ? null : t.element; 
 } 
 
 /** 
  * Internal method to insert into a subtree. 
  * 
  * @param x the item to insert. 
  * @param t the node that roots the tree. 
  * @return the new root. 
  */ 
 private AvlNode insert(Comparable x, AvlNode t) { 
  if (t == null) 
   t = new AvlNode(x, null, null); 
  else if (x.compareTo(t.element) < 0) { 
   t.left = insert(x, t.left); 
   if (height(t.left) - height(t.right) == 2) 
    if (x.compareTo(t.left.element) < 0) 
     t = rotateWithLeftChild(t); 
    else 
     t = doubleWithLeftChild(t); 
  } else if (x.compareTo(t.element) > 0) { 
   t.right = insert(x, t.right); 
   if (height(t.right) - height(t.left) == 2) 
    if (x.compareTo(t.right.element) > 0) 
     t = rotateWithRightChild(t); 
    else 
     t = doubleWithRightChild(t); 
  } else 
   ;  // Duplicate; do nothing 
  t.height = max(height(t.left), height(t.right)) + 1; 
  return t; 
 } 
 
 /** 
  * Internal method to find the smallest item in a subtree. 
  * 
  * @param t the node that roots the tree. 
  * @return node containing the smallest item. 
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  */ 
 private AvlNode findMin(AvlNode t) { 
  if (t == null) 
   return t; 
 
  while (t.left != null) 
   t = t.left; 
  return t; 
 } 
 
 /** 
  * Internal method to find the largest item in a subtree. 
  * 
  * @param t the node that roots the tree. 
  * @return node containing the largest item. 
  */ 
 private AvlNode findMax(AvlNode t) { 
  if (t == null) 
   return t; 
 
  while (t.right != null) 
   t = t.right; 
  return t; 
 } 
 
 /** 
  * Internal method to find an item in a subtree. 
  * 
  * @param x is item to search for. 
  * @param t the node that roots the tree. 
  * @return node containing the matched item. 
  */ 
 private AvlNode find(Comparable x, AvlNode t) { 
  while (t != null) 
   if (x.compareTo(t.element) < 0) 
    t = t.left; 
   else if (x.compareTo(t.element) > 0) 
    t = t.right; 
   else 
    return t;    // Match 
 
  return null;   // No match 
 } 
 
 /** 
  * Internal method to print a subtree in sorted order. 
  * 
  * @param t the node that roots the tree. 
  */ 
 private void printTree(AvlNode t) { 
  if (t != null) { 
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   printTree(t.left); 
   System.out.println(t.element); 
   printTree(t.right); 
  } 
 } 
 
 /** 
  * Return the height of node t, or -1, if null. 
  */ 
 private static int height(AvlNode t) { 
  return t == null ? -1 : t.height; 
 } 
 
 /** 
  * Return maximum of lhs and rhs. 
  */ 
 private static int max(int lhs, int rhs) { 
  return lhs > rhs ? lhs : rhs; 
 } 
 
 /** 
  * Rotate binary tree node with left child. 
  * For AVL trees, this is a single rotation for case 1. 
  * Update heights, then return new root. 
  */ 
 private static AvlNode rotateWithLeftChild(AvlNode k2) { 
  AvlNode k1 = k2.left; 
  k2.left = k1.right; 
  k1.right = k2; 
  k2.height = max(height(k2.left), height(k2.right)) + 1; 
  k1.height = max(height(k1.left), k2.height) + 1; 
  return k1; 
 } 
 
 /** 
  * Rotate binary tree node with right child. 
  * For AVL trees, this is a single rotation for case 4. 
  * Update heights, then return new root. 
  */ 
 private static AvlNode rotateWithRightChild(AvlNode k1) { 
  AvlNode k2 = k1.right; 
  k1.right = k2.left; 
  k2.left = k1; 
  k1.height = max(height(k1.left), height(k1.right)) + 1; 
  k2.height = max(height(k2.right), k1.height) + 1; 
  return k2; 
 } 
 
 /** 
  * Double rotate binary tree node: first left child 
  * with its right child; then node k3 with new left child. 



  38 

  * For AVL trees, this is a double rotation for case 2. 
  * Update heights, then return new root. 
  */ 
 private static AvlNode doubleWithLeftChild(AvlNode k3) { 
  k3.left = rotateWithRightChild(k3.left); 
  return rotateWithLeftChild(k3); 
 } 
 
 /** 
  * Double rotate binary tree node: first right child 
  * with its left child; then node k1 with new right child. 
  * For AVL trees, this is a double rotation for case 3. 
  * Update heights, then return new root. 
  */ 
 private static AvlNode doubleWithRightChild(AvlNode k1) { 
  k1.right = rotateWithLeftChild(k1.right); 
  return rotateWithRightChild(k1); 
 } 
 
 /** 
  * The tree root. 
  */ 
 private AvlNode root; 
} 
 

A2: AvlNode.java (Weiss, n.d.) 
 

// Basic node stored in AVL trees 
// Note that this class is not accessible outside 
// of package DataStructures 
 
class AvlNode { 
 // Constructors 
 AvlNode(Comparable theElement) { 
  this(theElement, null, null); 
 } 
 
 AvlNode(Comparable theElement, AvlNode lt, AvlNode rt) { 
  element = theElement; 
  left = lt; 
  right = rt; 
  height = 0; 
 } 
 
 // Friendly data; accessible by other package routines 
 Comparable element;      // The data in the node 
 AvlNode left;         // Left child 
 AvlNode right;        // Right child 
 int height;       // Height 
} 
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A3: RedBlackTree.java (Weiss, n.d.) 

 
// RedBlackTree class 
// 
// CONSTRUCTION: with a negative infinity sentinel 
// 
// ******************PUBLIC OPERATIONS********************* 
// void insert( x )       --> Insert x 
// void remove( x )       --> Remove x (unimplemented) 
// Comparable find( x )   --> Return item that matches x 
// Comparable findMin( )  --> Return smallest item 
// Comparable findMax( )  --> Return largest item 
// boolean isEmpty( )     --> Return true if empty; else false 
// void makeEmpty( )      --> Remove all items 
// void printTree( )      --> Print tree in sorted order 
 
/** 
 * Implements a red-black tree. 
 * Note that all "matching" is based on the compareTo method. 
 * 
 * @author Mark Allen Weiss 
 */ 
public class RedBlackTree { 
 
 /** 
  * Construct the tree. 
  * 
  * @param negInf a value less than or equal to all others. 
  */ 
 public RedBlackTree(Comparable negInf) { 
  header = new RedBlackNode(negInf); 
  header.left = header.right = nullNode; 
 } 
 
 /** 
  * Insert into the tree. Does nothing if item already present. 
  * 
  * @param item the item to insert. 
  */ 
 public void insert(Comparable item) { 
  current = parent = grand = header; 
  nullNode.element = item; 
 
  while (current.element.compareTo(item) != 0) { 
   great = grand; 
   grand = parent; 
   parent = current; 
   current = item.compareTo(current.element) < 0 ? 
     current.left : current.right; 
 
   // Check if two red children; fix if so 
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   if (current.left.color == RED && current.right.color == RED) 
    handleReorient(item); 
  } 
 
  // Insertion fails if already present 
  if (current != nullNode) 
   return; 
  current = new RedBlackNode(item, nullNode, nullNode); 
 
  // Attach to parent 
  if (item.compareTo(parent.element) < 0) 
   parent.left = current; 
  else 
   parent.right = current; 
  handleReorient(item); 
 } 
 
 /** 
  * Remove from the tree. 
  * Not implemented in this version. 
  * 
  * @param x the item to remove. 
  */ 
 public void remove(Comparable x) { 
  System.out.println("Remove is not implemented"); 
 } 
 
 /** 
  * Find the smallest item  the tree. 
  * 
  * @return the smallest item or null if empty. 
  */ 
 public Comparable findMin() { 
  if (isEmpty()) 
   return null; 
 
  RedBlackNode itr = header.right; 
 
  while (itr.left != nullNode) 
   itr = itr.left; 
 
  return itr.element; 
 } 
 
 /** 
  * Find the largest item in the tree. 
  * 
  * @return the largest item or null if empty. 
  */ 
 public Comparable findMax() { 
  if (isEmpty()) 
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   return null; 
 
  RedBlackNode itr = header.right; 
 
  while (itr.right != nullNode) 
   itr = itr.right; 
 
  return itr.element; 
 } 
 
 /** 
  * Find an item in the tree. 
  * 
  * @param x the item to search for. 
  * @return the matching item or null if not found. 
  */ 
 public Comparable find(Comparable x) { 
  nullNode.element = x; 
  current = header.right; 
 
  for (; ; ) { 
   if (x.compareTo(current.element) < 0) 
    current = current.left; 
   else if (x.compareTo(current.element) > 0) 
    current = current.right; 
   else if (current != nullNode) 
    return current.element; 
   else 
    return null; 
  } 
 } 
 
 /** 
  * Make the tree logically empty. 
  */ 
 public void makeEmpty() { 
  header.right = nullNode; 
 } 
 
 /** 
  * Test if the tree is logically empty. 
  * 
  * @return true if empty, false otherwise. 
  */ 
 public boolean isEmpty() { 
  return header.right == nullNode; 
 } 
 
 /** 
  * Print the tree contents in sorted order. 
  */ 
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 public void printTree() { 
  if (isEmpty()) 
   System.out.println("Empty tree"); 
  else 
   printTree(header.right); 
 } 
 
 /** 
  * Internal method to print a subtree in sorted order. 
  * 
  * @param t the node that roots the tree. 
  */ 
 private void printTree(RedBlackNode t) { 
  if (t != nullNode) { 
   printTree(t.left); 
   System.out.println(t.element); 
   printTree(t.right); 
  } 
 } 
 
 /** 
  * Internal routine that is called during an insertion 
  * if a node has two red children. Performs flip and rotations. 
  * 
  * @param item the item being inserted. 
  */ 
 private void handleReorient(Comparable item) { 
  // Do the color flip 
  current.color = RED; 
  current.left.color = BLACK; 
  current.right.color = BLACK; 
 
  if (parent.color == RED)   // Have to rotate 
  { 
   grand.color = RED; 
   if ((item.compareTo(grand.element) < 0) != 
     (item.compareTo(parent.element) < 0)) 
    parent = rotate(item, grand);  // Start dbl rotate 
   current = rotate(item, great); 
   current.color = BLACK; 
  } 
  header.right.color = BLACK; // Make root black 
 } 
 
 /** 
  * Internal routine that performs a single or double rotation. 
  * Because the result is attached to the parent, there are four cases. 
  * Called by handleReorient. 
  * 
  * @param item   the item in handleReorient. 
  * @param parent the parent of the root of the rotated subtree. 
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  * @return the root of the rotated subtree. 
  */ 
 private RedBlackNode rotate(Comparable item, RedBlackNode parent) {  
  if (item.compareTo(parent.element) < 0) 
   return parent.left = item.compareTo(parent.left.element) < 0 ? 
     rotateWithLeftChild(parent.left) :  // LL 
     rotateWithRightChild(parent.left);  // LR 
  else 
   return parent.right = item.compareTo(parent.right.element) < 0 ? 
     rotateWithLeftChild(parent.right) :  // RL 
     rotateWithRightChild(parent.right);  // RR 
 } 
 
 /** 
  * Rotate binary tree node with left child. 
  */ 
 static RedBlackNode rotateWithLeftChild(RedBlackNode k2) { 
  RedBlackNode k1 = k2.left; 
  k2.left = k1.right; 
  k1.right = k2; 
  return k1; 
 } 
 
 /** 
  * Rotate binary tree node with right child. 
  */ 
 static RedBlackNode rotateWithRightChild(RedBlackNode k1) { 
  RedBlackNode k2 = k1.right; 
  k1.right = k2.left; 
  k2.left = k1; 
  return k2; 
 } 
 
 private RedBlackNode header; 
 private static RedBlackNode nullNode; 
 
 static         // Static initializer for nullNode 
 { 
  nullNode = new RedBlackNode(null); 
  nullNode.left = nullNode.right = nullNode; 
 } 
 
 static final int BeLACK = 1;    // Black must be 1 
 static final int RED = 0; 
 
 // Used in insert routine and its helpers 
 private static RedBlackNode current; 
 private static RedBlackNode parent; 
 private static RedBlackNode grand; 
 private static RedBlackNode great; 
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} 
 

A4: RedBlackNode.java (Weiss, n.d.) 

 
// Basic node stored in red-black trees 
// Note that this class is not accessible outside 
// of package DataStructures 
 
class RedBlackNode { 
 // Constructors 
 RedBlackNode(Comparable theElement) { 
  this(theElement, null, null); 
 } 
 
 RedBlackNode(Comparable theElement, RedBlackNode lt, RedBlackNode rt) {  
  element = theElement; 
  left = lt; 
  right = rt; 
  color = RedBlackTree.BLACK; 
 } 
 
 // Friendly data; accessible by other package routines 
 Comparable element;    // The data in the node 
 RedBlackNode left;       // Left child 
 RedBlackNode right;      // Right child 
 int color;      // Color 
} 
 

 

Appendix B: Program used in the experiment 

 
int set = 100; // Change and re-run program 
 
for (int trial = 1; trial <= 10; trial++) { 
 AvlTree avl = new AvlTree(); 
 RedBlackTree rb = new RedBlackTree(Double.MIN_VALUE); 
 
 long startAVL = System.nanoTime(); 
 for (double i = 1; i <= set; i++) 
  avl.insert(i); 
 long endAVL = System.nanoTime(); 
 
 long startRB = System.nanoTime(); 
 for (double i = 1; i <= set; i++) 
  rb.insert(i); 
 long endRB = System.nanoTime(); 
 
 System.out.println("AVL Trial " + trial + ": " + (endAVL - startAVL)); 
 System.out.println("RB Trial " + trial + ": " + (endRB - startRB)); 
} 
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Appendix C: Raw data of times obtained 

 

C1: Raw and average times for AVL Tree 

 
Set Size 100 200 300 400 500 600 700 800 900 1000 

Trial 1 2581280 5983053 6669072 4445067 7613113 5983508 6363343 11501305 6973136 11601223 

Trial 2 488279 397182 1935790 2275095 504328 851024 1854499 1057391 910888 1867284 

Trial 3 410746 232996 631174 772049 522816 724961 646244 1945648 1170284 1054020 

Trial 4 272462 189196 275478 696903 1046400 434082 2021447 842967 1338265 1087820 

Trial 5 985350 133719 229312 464093 441713 438329 1745406 259145 988840 2134978 

Trial 6 135056 161752 199271 1048937 1008765 550976 1500212 152406 921561 6765564 

Trial 7 203909 352340 238741 274836 410040 1159039 736276 1085024 3434569 390173 

Trial 8 68037 167254 190581 308889 410341 499898 507880 362423 481209 554644 

Trial 9 109732 472998 374234 329820 410973 521406 1560302 150863 1771136 195349 

Trial 10 103929 232673 232664 327328 415393 2520195 167725 199961 314738 227860 

Average 535878 832316 1097632 1094302 1278388 1368342 1710333 1755713 1830463 2587892 

 

 

 

 

C2: Raw and average times for Red-Black Tree 

 
Set Size 100 200 300 400 500 600 700 800 900 1000 

Trial 1 897100 1572146 4719353 3807996 4511711 4618547 3827439 5471420 7612243 4993088 

Trial 2 398344 2047101 445611 4682227 415191 444595 565356 4396306 957851 1071088 

Trial 3 1603153 419289 471936 779954 1291588 502841 458196 9157614 8801192 2338015 

Trial 4 771489 161819 236261 365249 383348 513776 395184 631247 5122684 6833644 

Trial 5 50030 136920 1074495 325017 669508 4761305 9042658 749707 851016 3701804 

Trial 6 67463 196400 272305 352181 447824 6479630 2272656 1919854 1329396 949009 

Trial 7 100926 175193 273745 405009 7965308 831211 1359304 967175 331589 950182 

Trial 8 69530 163721 236786 361201 1165498 462080 730359 609491 300666 3204756 

Trial 9 68191 170886 436382 351122 422865 429500 3276667 557460 290566 1265100 

Trial 10 69194 202322 249268 436653 347118 517693 601042 715065 308959 988471 

Average 409542 524580 841614 1186661 1761996 1956118 2252886 2517534 2590616 2629516 

 

 

Appendix D: Permission letter from Dr. Mark Allen Weiss 
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